说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> "M-M"矩阵
1)  "Mechanism-Model" matrix
"M-M"矩阵
2)  M-matrix
M-矩阵
1.
Some inequalitites on the Schur complement of inverse M-matrix;
关于逆M-矩阵Schur补的几个不等式
2.
The Properties of the M-matrix and Notes about the M-matrix Hadamard Inequality;
M-矩阵的性质与Hadamard-Fisher不等式的注记
3)  M-matrix
M矩阵
1.
Method for judging inverse M-matrix and its parallel algorithm;
一种基于并行算法的逆M矩阵的判定方法
2.
A method of judging M-matrix and its parallel algorithm;
M矩阵的判定及其应用算法
3.
Parallel ILU factorization Preconditioners for Symmetric M-matrix;
对称M矩阵的并行不完全分解预条件
4)  M matrix
M矩阵
1.
Parallel algorithm for judging a block-tridiagonal M matrix;
块三对角M矩阵的并行判定方法
2.
Some Inequalities for Determinants of Inverce M matrix;
逆M矩阵的几个行列式不等式
5)  M-matrices
M矩阵
1.
Estimate for the Spectral Radius of a Nonnegative Matrices and the Least Eigenvalue of a M-matrices;
非负矩阵谱半径与M矩阵最小特征值的估计
2.
Introducing a special matrix measure and based on the elementary properties of M-matrices, the stability of T-S fuzzy systems is analyzed, and shows that the stability of a judgement matrix constructed by the coefficient matrices of related subsystems implies the global stability of the T-S fuzzy systems.
引用一个特定的矩阵测度,基于M矩阵的基本性质,分析T S模糊系统的稳定性问题·结果表明:利用T S模糊系统子系统的系数矩阵构造一个判断矩阵,该判断矩阵的稳定性蕴涵着原T S模糊系统的全局稳定性·这个代数判据不同于现有的Lyapunov稳定性框架之下的分析结果·然后,根据PDC算法,给出一种基于该代数判据的模糊状态反馈控制器的设计方法,并给出闭环T S模糊系统判断矩阵稳定的一个必要条件·最后,通过一个数值算例说明如何利用该代数判据来设计模糊状态反馈控制器
6)  inverse M-matrices
逆M-矩阵
1.
Criteria of a special inverse M-matrices;
一类特殊逆M-矩阵的判定
2.
We shall prove several inequalies involving symmetric positive semidef-inite,general M-matrices and inverse M-matrices which are generalization of the classical Oppenheim s Inequality for symmetric positive semidefinite matrices.
本文旨在推广关于对半正定矩阵成立的Oppenheim不等式,证明几种关于对称半定矩阵、一般M-矩阵和逆M-矩阵成立的Oppenheim型不等式,作为Oppenheim不等式的推广,这些不等式在理论上和应用上都是具有意义的。
3.
The special matrices included inverse M-matrices, inverse Z-matrices, tridiagonal matrices and nonnegative irreducible matrices.
其中重要的有特殊矩阵Z-矩阵、逆M-矩阵、三对角矩阵、非负不可约矩阵等。
补充资料:Cartan矩阵


Cartan矩阵
Cartan matrix

当它的Cartan矩阵是不可分解的:xndecom拼巧able),即在指标的某些置换后,不可能表为对角块矩阵. 令g=q、十十q。是g分解为单子代数的直和,A,是单I一ie代数g的C盯tan矩阵·则对角块矩阵 {…一{一:……是9的Cartan笼,阵.(对单Lze代数的Cartan矩阵的具体形式,见半单lje代数(Lie al罗bra,semi一slmple).) Cartan矩阵的分量“。二2恤等)/(“r·咐有下列性质: 拭.2:“‘()a,、Z,对,势了 以0二冷u/二11Cartan矩阵与用’‘三成元和关系来kjJ画q密切侧关即g中存在线性无关的生成兀e‘,厂、八,(i=飞、·…:)(称为典范生成元(以n、,,11以l罗nerators。),满足下歹,1关系: 卜,_用/氏h;I气州二“叮(2) }h,厂一“/」,lh‘寿}二以任意两个典范生成儿组可由q的自同构互相变换.典范产仁成元还满足关系 (ad引“’价二。,扭d厂)‘仁’.石二。,,若/,(3)据定义这里(adx汗一卜川对丁一给定的生成兀组。、fh(i一l,二,心关系(2)和(3)定义了g戈见[2〕). 对满足(I)的任意矩阵A,设以。,f,h,(i=l,;)为生成一f以(2),〔3)为定义关系的klLie代数为g妇),则乌训)是有限维的,当且仅当A是一个一半单bc代数的Cartan矩阵{3]I补注]满足条初门)的矩阵左定义一个有限维l玲代数,当且仪当它是王定的;在其他情况,如半正定情形,出现其他有趣的代数,见Kac一M以月y代数(K-a。M以刘y al罗bra),{A2」. 设L是特征为0的代数闭域上的半单Lic代数,则满足条件(2)的生成元e,厂,h,的集合也称为Cheva-lley生成元(Chevalley罗nerators)或Chevalley基份hevalley basis)这样的生成元的存在性定理称为C讹valley定理(Chevalley theorem).关系(2),(,;)定义Lie代数的结果常称为Serre定理(Serre th即。。、2)域K上带单位元的有限维结合代数A的Cartan琴阵是矩阵(ctj)(i·,一‘,“‘、‘),由有限维不可约左A模的完全集N!,…,从来定义.明确地说,气是满足Hom(月,N)并O的不可分解投射左A模月的合成列中凡出现的次数.对每个N,这样的只存在巨在同构意义下是唯一确定的 在一定情况下,〔artan矩阵〔”被证明是对称正定的,甚至C二D了D,这里D是整数矩阵。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条