1) semi-explicit difference scheme
半显式差分格式
1.
Two classes of three level semi-explicit difference schemes depending on a parame- ter are developed for solving dispersion equation u_1=au_(xxx).
本文建立了解色散方程u_1=au_(xxx)的两类含参数的三层的半显式差分格式。
2) explicit and semi-explicit difference scheme
显式与半显式差分格式
3) semi-explicit and explicit schemes
半显式与显式差分格式
4) semi-explicit differencing scheme
半显差分格式
1.
A semi-explicit differencing scheme of seven points for solving the parabolic equations of one-dimensions is presented in this paper,The truncation error is O(τ~2+h~4),and the stability condition is.
就一维抛物型方程构造了一个两层七点半显差分格式,格式的截断误差达到0(2τ+h4),稳定性条件是0
5) explicit difference scheme
显式差分格式
1.
Study of two level explicit difference schemes for unsteady convection-diffusion problems;
非定态对流扩散方程的二层显式差分格式研究
2.
An explicit difference scheme with high precision for solving the parabolic equation;
解三维抛物型方程的一个高精度显式差分格式
3.
In the paper we present a numerical method to solve nonlinear sinusoidal vibration equation,in which the explicit difference scheme is applied to discrete the space variable x and the time variable t and trapezoidal rule is adopted to calculate the nonlinear integration.
给出求一类非线性弦振动方程的数值方法,空间x方向及时间t方向均采用显式差分格式,积分项采用梯形公式。
6) explicit difference schemes
显式差分格式
1.
One class of high accuracy explicit difference schemes of three layers and seven points for solving one-dimension parabolic equations are presented by the undetermined parameters method,its truncation error is O(τ3+h6),the stability condition isO<r4/5.
利用待定系数法对一维抛物型方程构造了一类高精度的三层七点显式差分格式,格式的截断误差达到O(τ3+h6),稳定性条件是0
2.
Two new classes of three level explicit difference schemes with higher stability are advanced for solving high order evolution equation ut=a 2k+1 ux 2k+1 (where a ≠0 is a constant, k =1,2,3,…)with higher stability.
提出解高阶演化方程u/t= a(2k+ 1u)/x2k+ 1(其中a≠0 为常数,k= 1,2,3,…)的两类新的具有高稳定性的三层显式差分格式,较大地改进了同类格式的稳定性条件。
3.
Two class of explicit difference schemes for nonlinear schrodinger equations are constructed.
应用引入耗散项的方法,对非线性Schrodinger方程构造了两个显式差分格式,用能量估计方法证明了格式的收敛性和稳定性条件可以达到τ/h ̄2<1。
补充资料:显式差分方法
见分步法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条