1) processing of contributions
稿件状态
2) manuscripts
[英]['mænjuskript] [美]['mænjə,skrɪpt]
稿件
1.
Excavating the implied information for choosing referee from manuscripts;
充分挖掘稿件中的审稿信息
2.
This paper describes what review means,analyzes problems in its writing and puts forward basic contents and ways in writing so as to improve the quality of going over manuscripts.
旨在提高稿件审读质量。
3.
This paper deals with an analysis on professional structure of manuscripts published in agricultural sci-tech periodicals which Journal of Zhejiang Agricultural Sciences is taken as an example and the output value structure of cereal crop,cash crop,horticulture and vegetables,as well husbandry as a contrast during a period of 1998-2006.
以《浙江农业科学》为例,以1998-2006年四大类农业产业产值结构相对比例作为对照,与农业科技期刊的稿件结构进行了对比分析。
3) Contribution
[英][,kɔntrɪ'bju:ʃn] [美]['kɑntrə'bjuʃən]
稿件
1.
Analysis of Problems about Reference Listing in Some Contributions;
一些稿件参考文献存在问题分析
2.
Application of database route Access in contribution management of sci-tech periodicals;
数据库程序Access在科技期刊稿件管理中的应用
4) paper
[英]['peɪpə(r)] [美]['pepɚ]
稿件
1.
Misunderstandings and countermeasures of paper organization and selection in university journals;
高校学报稿件组织选择误区及应对策略
2.
Paper Analysis on the Proceedings of ’99 Symposium of New Technologies for GPS and Control Surveying;
《’99GPS与控制测量新技术研讨会论文集》稿件分析
3.
The paper approaches the adjudicating standards in an editor s angle of view on a paper,and analyses some key elements of characters for preparing a paper from three aspects: 1.
从稿件的选题与立论、稿件的取材与立据及稿件的写作与论证三个层面探讨了编辑评判稿件的标准,分析了学术论文的品质要素。
5) manuscript
[英]['mænjuskrɪpt] [美]['mænjə'skrɪpt]
稿件
1.
Exploitation of Manuscript Manage System for Print Fields;
出版业稿件管理系统的开发
2.
Analysis of operation of a manuscript management system;
稿件采编系统的操作分析
3.
Management of manuscripts in sci-tech journal editorial departments;
科技期刊编辑部的稿件管理方法
6) state elements
状态元件
1.
This paper introduces the application of controller FX 2-48MR to the farnace making CO and a sucessful experience of programing by state elements.
运用状态元件(S) 编程的成功经
补充资料:应力状态和应变状态
构件在受力时将同时产生应力与应变。构件内的应力不仅与点的位置有关,而且与截面的方位有关,应力状态理论是研究指定点处的方位不同截面上的应力之间的关系。应变状态理论则研究指定点处的不同方向的应变之间的关系。应力状态理论是强度计算的基础,而应变状态理论是实验分析的基础。
应力状态 如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
应力圆 是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
应变圆 也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε0°、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2。
广义胡克定律 当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
τxy=Gγxy
τyz=Gγyz
τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
单向应力状态下的胡克定律则为σ=Eε。
应力状态 如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
应力圆 是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
应变圆 也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε0°、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2。
广义胡克定律 当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
τxy=Gγxy
τyz=Gγyz
τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
单向应力状态下的胡克定律则为σ=Eε。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条