1) strictly accretive mapping
严格增生映射
2) strictly increasing mapping
严格递增映射
3) accretive mapping
增生映射
1.
By using the perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta,the result on the existence of a solution u∈Lp(Ω) of nonlinear Neumann boundary value problems involving the p-Laplacian operator p,where 2N/(N+1)<p<+∞且N≥1.
利用Calvert和Gupta关于非线性增生映射值域之和的扰动定理,得到了一类含有p拉普拉斯算子Δp的非线性Neumann边值问题在Lp(Ω)空间中解的存在性的结论,其中2N/(N+1)
2.
By using the perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta,the abstract results on the existence of solution u∈L~a(Ω)of nonlinear boundary value problems involving the p-Laplacian operator have been obtained, where(2N/N+1)<p(?)s<+∞,for N(?)1.
利用Calvert和Gupta关于非线性增生映射值域的扰动理论,研究了与p-Laplace算子相关的非线性边值问题在L~s(Ω)空间中解的存在性,其中(2N/N+1)<p(?)s<+∞且N(?)1。
3.
Let E be a real uniformly smooth Banach space,A:D(A)=E→2~E be a m-accretive mapping and z∈E be an arbitrary element.
令E为实一致光滑Banach空间,A:D(A)=E→2E为m增生映射,z∈E为任意元,0∈R(A)。
4) (strictly) non-extendedmapping
(严格)非扩展映射
5) strictly convex fuzzy mapping
严格凸模糊映射
1.
Based on refrence,the relationship between convexity and strict convexity of fuzzy mapping is discussed and the result that convex fuzzy mapping is the sufficient condition for strictly convex fuzzy mapping is obtained.
在已有文献的基础上,讨论了模糊映射的凸性和严格凸性之间的关系,得到了凸模糊映射为严格凸模糊映射的充分条件。
补充资料:卵巢间质增生和卵泡膜增生
卵巢间质增生和卵泡膜增生
单纯卵巢间质增生所致双侧卵巢增大,即‘卵巢间质增生’;有黄素化间质细胞者称‘卵泡膜增生’。多发生于绝经后,可能因绝经后下丘脑-垂体功能紊乱,卵巢间质对垂体促性腺激素的一种增生性反应。常伴发糖尿病、高血压、肥胖、和甲状腺功能减退。临床上出现雌激素或雄激素过高现象。可伴子宫内膜增生甚至内膜癌等病变。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条