1) predicament
状态性
1.
Sociality, predicament and functionality constitute three dimensions of self.
自我的社会性、状态性和功能性构成立体自我的三个维度;这三个维度的有机整合是研究复杂自我的途径之一。
2) state-trait anxiety
状态性焦虑
1.
The changes of brain wave characteristics and state-trait anxiety of different state-trait anxiety sufferers before and after doing Taijiquan exercise;
不同状态性焦虑者参加太极拳运动前后脑波特征及状态性焦虑的变化
3) goal state
状态性目标
4) state
状态
1.
Workflow instances migration approach based on state;
基于状态的工作流实例迁移方法
2.
Characteristics of variation for annual runoff state based on set pair analysis;
基于集对原理的年径流状态时序变化特性分析
3.
Applications of PLC original state instruction in manipulator control system;
PLC初始状态指令在机械手控制系统中的应用
5) Condition
状态
1.
Condition Monitoring Techniques for Lubrication System of Automotive Engine;
车用内燃机润滑系统的状态监测技术
2.
A New Sensor for Monitoring Conditions of Rotating Parts;
用于旋转物体状态监测的新型传感器
3.
Study on Transformer Condition-based Maintenance Information Management System;
变压器状态维修信息管理系统的研究
6) status
状态
1.
Development of radioactive source status monitor.;
放射性源状态监测仪的研制
2.
GM(1,N)-2 Model & Its Application to the Prediction of Machine status;
GM(1,N)-2模型及其在机器运行状态预测中的应用
3.
A workflow access control base on task-status oriented RBAC algorithm in document flow;
面向任务、状态的RBAC访问控制机制在公文流转中的应用
参考词条
补充资料:应力状态和应变状态
构件在受力时将同时产生应力与应变。构件内的应力不仅与点的位置有关,而且与截面的方位有关,应力状态理论是研究指定点处的方位不同截面上的应力之间的关系。应变状态理论则研究指定点处的不同方向的应变之间的关系。应力状态理论是强度计算的基础,而应变状态理论是实验分析的基础。
应力状态 如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
应力圆 是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
应变圆 也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε0°、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2。
广义胡克定律 当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
τxy=Gγxy
τyz=Gγyz
τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
单向应力状态下的胡克定律则为σ=Eε。
应力状态 如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
应力圆 是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
应变圆 也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε0°、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2。
广义胡克定律 当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
τxy=Gγxy
τyz=Gγyz
τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
单向应力状态下的胡克定律则为σ=Eε。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。