说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 并列递归
1)  coordinate recursion
并列递归
2)  recursive sequence
递归序列
1.
The relation between the iteration of projective function and the linear recursive sequences of order 2 is given.
先给出射影函数的迭代与 2阶线性递归序列的关系 ,进而得到此递归序列与Bernoulli数的一个恒等
3)  recursive sequence
递归数列
1.
In this paper,the author has proved that the Diophantine equation x3+64=21y2 has only an integer solution(x,y)=(-4,0),(5,±3) and then gives all integer solution of x3+64=21y2 by using the elementary methods such as recursive sequence,congruent fomula and quadratic residue.
利用递归数列、同余式和平方剩余几种初等方法,证明了不定方程x3+64=21y2仅有整数解(x,y)=(-4,0),(5,±3);给出了x3+64=21y2的全部整数解。
2.
In this paper,the author has proved that the Diophantine equation x3+27=7y2 has only an integer solution(x,y)=(-3,0),(1,±2) and then gives all integer solution of x3+27=7y2 by using the elementary methods such as recursive sequence,congruent fomula and quadratic residu
利用递归数列、同余式和平方剩余几种初等方法,证明了不定方程x3+27=7y2仅有整数解(x,y)=(-3,0),(1,±2);给出了x3+27=7y2的全部整数解。
3.
By applying the properties of determinant, the general formula of a usual type of linear recursive sequence is studied.
应用行列式的有关性质,研究了一般形式的线性递归数列的通项公式。
4)  recurrent sequence
递归数列
1.
In this paper,the authors use recurrent sequence to prove that the diophantine equation x3-1=26y2 has only integer solutions(x,y)=(1,0),(3,±1),(313,±1086).
用递归数列方法证明了方程x3-1=26y2全部整数解是(1,0),(3,±1),(313,±1086)。
2.
By using congruence and recurrent sequence,the author has proved that the Diophantine equation x3+1=86y2 has only the integer solution(x,y)=(-1,0),(7,±2).
利用递归数列、同余式证明了丢番图方程x3+1=86y2仅有整数解(x,y)=(-1,0),(7,±2)。
3.
By using the method of recurrent sequence,the Diophantine equation x3-8=13y2 has been proven to have the only integer solution(x,y)=(5,±3) with gcd(x,y)=1.
利用同余式和递归数列的方法,证明了不定方程x3-8=13y2仅有适合(x,y)=1的整数解(x,y)=(5,±3)。
5)  recurrent sequence
递归序列
1.
This paper proves that the Diophantine equation has only integer solution with the help of the Pell method taking an integer>1 as module to make inconsistency,the natures of recurrent sequences and equivalent Pell equation.
采用对方程取某个正整数M>1为模来制造矛盾的同余法和利用递归序列的性质,以及Pell方程的性质,证明不定方程x3-1=13y2仅有整数解(x,y)=(1,0)。
2.
In this paper,the author has proved, with two method of contradictor recurrent sequences and congruence when modules of some positive integer M>1, that the Diophantine equation x~3+1=19y~2 has only integer solution(x,y)=(1,0).
利用两种初等的方法,即对方程取某个正整数M>1为模来制造矛盾的同余法和递归序列法,证明了不定方程x3 -1=19y2 仅有整数解(x,y)=(1,0),从而进一步的证明了方程x2 -19y2 =-13无整数解;方程x2 -3r2 =-3仅有整数解(1。
3.
With the method of recurrent sequence and congruences,proved that the Diophantine equation x3+1 =37y2has only integer solution(x,y)=(-1,0),(11,±6).
利用递归序列,同余式证明了丢番图方程x 3+1=37y2,仅有整数解(x,y)=(-1,0),(11,±6)。
6)  recurrence sequences
递归序列
1.
Formulas for simple and direct computations for Euler--Bernoulli polynomials of n variablesare presented,some identities containing recurrence sequences and Euler--Bernooulli polynomials of n variables have been established.
给出简捷计算n元Euler-Bernoulli多项式的公式,建立一些包含递归序列和上述多项式的恒等式。
补充资料:
【诗文】:
束带还骑马,东西却渡船。林中才有地,峡外绝无天。
虚白高人静,喧卑俗累牵。他乡悦迟暮,不敢废诗篇。



【注释】:



【出处】:
全唐诗:卷230_55
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条