说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 特征数据
1)  characteristic data
特征数据
1.
Second, corresponding methods and requirements are proposed in the key step of data pre- pare,such as the conduct of missing data,abnormal data,characteristic data,and so on.
首先,进行交通原始信息提取和描述,然后对数据预备过程中关键步骤, 如丢失数据处理异常数据处理、和特征数据的提取等步骤提出了相应的具体方法和要求,最后得到了适合数据挖掘的交通特征数据
2)  Data character
数据特征
3)  data feature
数据特征
1.
The character and data feature of the fuel pressure wave for diesel engine;
柴油机燃油压力波形的变化规律与数据特征
2.
In order to overcome the difficulties in constructing kernel function with data feature for current su-pport vector machines(SVMs),this paper constructs three new kernel functions by reconstructing the similarity surface of data samples.
根据数据特征构造核函数是当前SVM(支持向量机)的难点,文章采用重构数据样本相似度曲面的方法构造三种新的核函数。
4)  Data characteristics
数据特征
1.
Event stream is a new kind of analysis application on massive data which enter the system in real-time and data characteristics are important components of workload modeling to evaluate specific system.
事件流是近年来兴起的一种对实时进入系统的海量数据进行分析查询的应用,而数据特征是评价系统所需要的负载模型的重要部分。
2.
The uniformity between the statistic analysis result of industrial control modeling and the theory knowledge caused by data characteristics is analyzed,which enable people to gain overall understanding of the statistic modeling and deal with the statistic analysis result rationally.
研究了若干由数据特征引起的工业控制模型统计建模结果与理论知识不符的现象,为全面理解及合理判断建模统计分析结果提供了帮助。
5)  feature database
特征数据库
1.
A search engine of image comparison is presented to establish image feature database by a new approach of fractal image processing and indexing.
传统的搜索引擎只能搜索文字型的资料 ,显然无法满足用户想通过搜索引擎来取得与图像相关的信息的需求 提出一种图像比对搜索引擎 ,利用分形图像处理和索引技术来建立图像特征数据库 当用户输入查询图像时 ,系统对于用户输入的图像也采用与分形图像处理相同的方式取得特征值 ,然后再与图像特征数据库的特征矢量作比对 ,达到数据搜索的目的 实验表明 ,图像比对搜索引擎除了可以找出用户输入的相似图像外 ,对于查询图像的旋转、模糊或噪声 ,图像比对搜索引擎也能够找出正确的图像 ,证明文中方法对图像的容错性和适应性
6)  database property
数据库特征
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条