4) existence theorem
存在性定理
1.
In this paper,to use the section theorem in the field of nonlinear analysis,we prove a new existence theorem of weight Nash equilibrium.
利用非线性分析中的截口定理,证明了一个新的权Nash平衡的存在性定理。
2.
After studying inverse problems in matrix theory as wellas inverse eigenvalue promems ofsymmetric tridiagonal matrices,the author has constructively proved an existence theorem ofsolutions to the inverse problems of generalized eigenvalue of symmetric tridiagonal matrices.
在综合分析矩阵论中某些反问题和对称三对角矩阵特征值反问题的基础上,提出对称三对角矩阵的广义特征值反问题解的存在性定理,并给予证明。
3.
By making use of an extension Krasnosel′skii fixed point theorem in cones,it is established that existence theorem of at least one positive solution for a class of nonlinear second-order m-point boundary value problems with derivative(1.
2)建立了至少一个正解的存在性定理,而且说明对边值条件(1。
5) Existence Theorems
存在性定理
1.
In this paper, by applying Fan s Lemma,new existence theorems for vector implicit variational inequalities and vector implicit complementarity problems with a more general ordering in ordering Banach spaces introduced by Huang and Li are proved.
作者通过运用Fan引理,证明了一些由黄和李在实Banach空间中广义序意义下引入的向量隐变分不等式以及向量隐补问题新的存在性定
2.
The present paper covers nonlinear boundary value problem for a class second order Volterra-hammestein type integrodifferential equation (Φ p(u))=f(t,u,T 1u,T 2u,u),L(u(0),u(0))=0,R(u(1),u(1))=0 is studied by using upper and lower solution and obtained existence theorems.
本文利用上下解方法研究了一类Volterra-hammerstein型积分微分方程非线性边值问题(|u|p-2u)=f(t,u,T1u,T2u,u)(p>1)L(u(0),u(0))=0R(u(1),u(1))=0{[Tiu](t)=φi(t)+∫toKi(t,s)u(s)ds(i=1,2)给出了解的存在性定理。
3.
The present paper covers nonlinear boundary value problem for general second order Volterra-Hammerstein type integrodifferential equationis studied by using upper and lower solution and obtained existence theorems.
本文利用上下解方法研究了一般的二阶Volterra-Hammerstein型积分微分方程非线性边值问题 u″=f(t,u,T_1u,T_2u,u′),L(u(0),u′(0))=0,R(u(1),u′(1))=0, [T_1u](t)=φ_1(t)+integral from n=0 to t(K_1(t,s)u(s)ds),[T_2u](t)=φ_2(t)+integral from n=0 to 1(K_2(t,s)u(s)ds),给出了解的存在性定理。
6) Whatever is, is right.
存在就是合理。
补充资料:存在主义伦理学(见存在主义)
存在主义伦理学(见存在主义)
existentialist ethics
cu陀012加yilun淞Ue存在主义伦理学(existeotialist ethics)见存在主丸
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条