|
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
|
|
1) dualizer
对偶子
2) dual atom
对偶原子
1.
It is proved that there are at least two dual atoms in every non-chain R_0-algebra with finite order contains.
证明了非链的有限R0-代数至少含有两个不同的对偶原子;在同构的意义下,非链的6元R0-代数有且仅有一个,并具体给出了它的构造,即一个2值的和一个3值的Lukas iew icz蕴涵代数的直积。
3) dual operator
对偶算子
1.
A to be determined coefficient method for finding dual operators of hierarchiesof non-linear evolution equations is proposed.
本文提出了寻求非线性演化方程的对偶算子的待定系数法。
2.
The paper has studied the structure of spectrum for dual operators and partial differen- tial operators on locally convex spaces,The main results are as follows: Theorem 1 Let X be a complete barrelled space.
研究了局部凸空间上对偶算子和偏微分算子的谱结构。
3.
Inverse and dual combination operator is defined as a new genetic operator based on respective application study of inverse operator and dual operator,which can improve local searching.
在逆序算子和对偶算子的性能研究基础之上,设计了逆序与对偶组合遗传算子,增强了局部搜索性能。
4) dual numerator
对偶分子
5) dual functor
对偶函子
6) Lipschitz quasi-dual operator
拟对偶算子
1.
The concept of Lipschitz quasi-dual operator of nonlinear Lipschitz operator is introduced;and some results of nonlinear Lipschitz operators are given;that is,the "*"operation depended on nonlinear Lipschitz operators is linear;and the resonance theorem for nonlinear Lipschitz operators still hold.
引入非线性Lipschitz算子的Lipschitz拟对偶算子的概念,从而证明了非线性Lipschitz算子的“*”运算的线性性,作为应用,最后证明了非线性Lipschitz算子的共呜定理。
补充资料:Harnack不等式(对偶Harnack不等式)
Harnack不等式(对偶Harnack不等式) quality (dual Hatnack inequality) Harnack in- 【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o 0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|