1) A being quasi (S quais)normal in B
A在B中拟(S-拟)正规
2) S-quasinormal
S-拟正规
1.
Influence of S-quasinormal Subgroups on the Structure of Finite Groups;
S-拟正规子群对有限群结构的影响
2.
Localized s-quasinormality of Some Subgroups of Finite groups
有限群子群的局部s-拟正规性
3.
We define s1(G) and s2(G) as the number of different orders of non-subnormal subgroups and the number of different orders of non-S-quasinormal subgroups,respectively.
设G是有限群,s1(G)表示G的非次正规子群的不同阶的个数,s2(G)表示G的非S-拟正规子群的不同阶的个数。
3) Y is quasi-normal in X
Y在X中拟正规
1.
It is proved that if Y is Ti in X,then Y is Ti-1 in X,where i is from 3 to 4;When Y is a open and closed subspace of X,Y is normal in X if and only if Y is quasi-normal in X if and only if Y is strongly normal in X.
本文讨论了拓扑空间的相对分离性,证明了若Y在X中是Ti的,则Y在X中是Ti-1(i=3,4);当Y是X的既开又闭子空间时,Y正规、Y在X中正规、Y在X中拟正规和Y在X中强正规是等价的。
6) p-(S) quasi normal subgroup
p-(S-)拟正规子群