2) Neo-Confucianism in the Song and Ming dynasties
宋明理学
1.
Influence of Neo-Confucianism in the Song and Ming dynasties on the theory of traditional Chinese medicine;
宋明理学对中医学理论的影响
2.
However scholars of neo-Confucianism in the Song and Ming Dynasties view it as a philosophy category.
而宋明理学把《周易》纳入了理学的视野,对"洁静精微"作出了新的阐释。
3) Neo-Confucianism
宋明理学
1.
The thought on Neo-Confucianism self-cultivation;
宋明理学的自我修养思想
2.
An Analysis on Mou Zong-san’s Viewpoint about Three Schools of Neo-Confucianism in View of the Nature of Pre-Qin Confucianists;
从先秦儒家之“性”看牟宗三关于宋明理学“三系说”
3.
Moral Metaphysics——on the Metaphysical Ground that MOU Zong-san Putting Neo-Confucianism into Three Schools;
道德的形上学——牟宗三宋明理学三系说的形上根据
4) rationalistic Confucianism in the North and the South Song Dynasty
两宋理学
1.
As the cumulation of the rationalistic Confucianism in the North and the South Song Dynasty,Zhu Xi s philosophy was regarded as "the most extensive and the most profound" in the history of Chinese civilization.
作为两宋理学的集大成,朱子哲学在中国文化史上可谓“致广大,尽精微”。
5) Song-Ming Neo-Confucianism
宋明理学
1.
On the Impact of Song-Ming Neo-Confucianism on the Spirit of Chinese Nation;
宋明理学与中华民族精神
6) Neo-Confucianism of the Song and Ming Dynasties
宋明理学
1.
Spiritual Core of Jiangxi School of Poetry Is the Neo-Confucianism of the Song and Ming Dynasties——Neo-Confucianism of the Song and Ming Dynasties Is the "Philosophy of Jiangxi School;
江西诗派的精神内核是宋明理学——二论宋明理学是"江西之学
2.
Neo-confucianism of the Song and Ming Dynasties——The Theory of Jiangxi;
宋明理学是“江西之学”
3.
His theory had made a profound impact to Neo-Confucianism of the Song and Ming Dynasties .
李翱复性思想在思想内容、思维方式、修习方法、道统论等诸多方面都对宋明理学产生了深远的影响。
补充资料:Власов动理学方程
Власов动理学方程
VTasov kinetic equation
B口acoB动理学方程口h脚v肠咖劝c阅四目阅;助ac。股以Ile仪,ec劝e yPaaHe欲e」 关于带电粒子的动理学方程,其中粒子之间的相互作用通过自洽电磁场予以描述.方程具有形式(见「11,【2】) 刁人 气巴于+v·脚dr人+ 日t二一rJ。 +二七[E+fv x Bll.它口d_f_=0.(l、 m,其中几(t,r,v)是粒子分布函数,而指标。指示粒子种类.自洽电磁场E,B根据M血”阶亚方程组(Max讹11闪ua石ons) 上。tB_。。丝十。.divE一二‘! 拜n一dr£‘It ro“一万丁,山v”一”j得出,其中。。和产。为真空电容率和真空磁导率,而体电荷密度p和体电流密度j则与粒子分布函数人通过 。(:.r卜y。_f£(:.,.,、、3 v.飞 JL‘,r)=令“·jJ·气‘,r,v)v“一vJ相联系.如果忽略粒子间相互作用或者假定多粒子分布函数是单粒子分布函数的乘积,则B服coB动理学方程可由给定种类“的全部粒子的分布函数的U倒M血方程(Liou喇泊e闰Uation)获得(见【3],[4」). A.A.B月acoB所提出的方程组(1),(2),(3),被广泛应用于等离子体物理学.以方程组(1),(2),(3)的线性化为基础的线性理论是得到最充分发展的理论.它被用于研究等离子体的小振荡和稳定性(t 51).拟线性理论,它使非线性效应的研究成为可能,正处于全力发展中.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条