说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> K-近邻核估计
1)  K-Nearest Neighbors Kernel Estimation
K-近邻核估计
1.
In this paper K-Nearest Neighbors Kernel Estimation method was applied to forecasting the throughput of empty containers at Hong Kong Port based on regression analysis,which was compared with parametric regression.
以香港港口为例,采用K-近邻核估计对港口空箱吞吐量进行回归计算,将计算结果与参数回归方法的计算结果进行比较,表明K-近邻核估计的拟合效果和预测精度都优于多元线性回归方法的拟合效果和预测精度。
2)  k-NN estimator
k-近邻估计
3)  Nearest Neighbor-Kernel Estimates
近邻-核估计
4)  kNN density estimation
k近邻密度估计
5)  generalized k-nearest neighbor
广义k-最近邻估计
1.
The non-parametric density estimation—generalized k-nearest neighbor(GKNN) estimation based novel independent component analysis(ICA) algorithm which is fully blind to the sources is proposed using a linear ICA neural network.
基于概率密度非参数估计的广义k-最近邻估计(GKNN)和线性独立成分分析(ICA)神经网络,提出了一种新的ICA非参数算法,实现了对源信号分布的全"盲"要求。
6)  nearest neighbor estimator
近邻估计
1.
Least square nearest neighbor estimator of non-linear semiparametric models;
非线性半参数模型最小二乘近邻估计
补充资料:维纳核估计
      用泛函级数模型逼近非线性系统的动态过程,又称白噪声估计方法。1887年V.沃尔泰拉引用一致收敛的泛函级数来逼近连续函数,这就是著名的沃尔泰拉级数。可以用沃尔泰拉级数来逼近一个非线性系统的输入输出关系。但是由于沃尔泰拉级数的核不是正交的,在估计这些核时不能简单地通过输入激励和系统的响应来得到结果。
  
  1958年R.维纳建立一组正交核:
  
  
   式中y(t)是系统的响应;Gm(m=0,1,2,...)是一组泛函;当系统的激励u(t)是正态白噪声时,Gm是正交的;hm(τ1,...,τm)称为m 阶维纳核。前几阶维纳核hm满足下列等式:
  
  
  
  
  其中P是输入白噪声u(t)的功率谱密度。
  
  利用Gm的正交性和正态白噪声的性质可以通过不同的途径比较方便地得到hm的估计。最常用的是互相关方法,也就是利用输入和输出的互相关函数来估计hm
  
  前几阶核的估计是:
  
  
  
  
   h0=E [y(t)]
  
  
    
   
  
  
  这种估计方法主要是利用正态白噪声的特殊性质,所以又称为白噪声估计方法。除此之外还可以利用其他的特殊函数,如拉盖尔多项式等来估计核,但是计算十分复杂。
  
  图1是典型的一、二阶核计算方法。图中是在白噪声刺激(输入)下系统的响应曲线y(t);响应曲线的零阶核h0(常数),即y(t)的期望值;y(t)减去期望值得到的零均值响应y0;y0与白噪声的互相关函数h1(τ),即一阶核;白噪声的刺激下一阶核的线性响应y2(t);响应y(t)减去线性响应y2(t)得到的非线性响应y1(t);非线性响应与两个白噪声输入之间的互相关函数h212),即二阶核。在τ1、τ2平面上的核状封闭曲线是h21,τ2)的等值线。
  
  白噪声估计方法的重要性在于:两个系统一致(即有完全相同的输入输出关系)的充分必要条件是它们对正态白噪声输入有相同的响应。因此用正态白噪声估计出来的维纳核只要精度足够高,就可以作为系统的描述,并可用以预测对任何输入的响应。这种方法着眼于研究缺乏先验知识、机理不清的非线性系统,适用于研究黑箱。这种方法在生理系统的分析中得到成功的应用。例如在研究脊椎动物视网膜的过程中把刺激-响应试验(即功能辨识)和解剖学知识 (即结构辨识的先验知识)结合起来完成视网膜的建模和辨识。先辨识对视网膜的光刺激s和送入大脑的信号r之间的功能关系,这是完全的黑箱方法(图2虚线部分)。再利用解剖学知识,知道水平细胞H处于从光到神经中枢信息处理的通路中间,然后测量H的响应r1,原系统就分解成两个子系统。再将电流通入H并记录视网膜光感受器R 的响应就可证实从H到 R存在反馈。这样就把视网膜分解成三个子系统并能测出各自的特性。继续这种分解,逐步打开黑箱便得到完整的视网膜模型(图3)。图3中,r3为对双极细胞B的检测,r4为对无长突细胞A的检测。图4是用所测数据求得的视网膜模型一阶核和二阶核。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条