说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 自然数集
1)  natural number Set
自然数集
2)  new set of natural numbers
新自然数集
3)  natural numbers set N
自然数集N
4)  natural number set N
自然数集合N
1.
Through the analysis of the second power Cartesian product of natural number set N——N×N and the thirdpower Cartesian product of natural number set N——N×N×N,obtains the conclusion that they all have the bijective relation to natural number set N,it means that the set N×N and the set N×N×N are all countably infinite.
通过对自然数集合N的二次笛卡尔积运算———N×N和三次笛卡尔积运算———N×N×N的详细分析,得出了它们与自然数集合N之间都存在双射关系结论,即集合N×N和集合N×N×N都是可数无穷的。
5)  natural luring
自然诱集
6)  natural aggregation
自然集群
补充资料:自然数
自然数
natural number

   用以计量事物的件数或表示事物次序的数。 即用数码1,2,3,4,……所表示的数。自然数由1开始   一个接一个,组成一个无穷集合。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论棗自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。
   序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义。
   自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。②N中每一个元素都能在N中找到一个元素作为它的后继者。③1不是任何元素的后继者。④不同元素有不同的后继者。⑤(归纳公理)N的任一子集M,如果1∈M,并且只要xM中就能推出x的后继者也在M中,那么MN
   基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数。这样,所有单元素集{x},{y},{a},{b}等具有同一基数, 记作1 。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等。自然数的加法、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条