1) Knowledge topology
知识拓扑
2) Knowledge universe topology spaces
知识论域拓扑空间
3) topology-aware
拓扑感知
1.
Design and Implementation of Topology-aware Based P2P Routing Model in Media Distribution System;
媒体分发系统中基于拓扑感知P2P路由模型的设计与实现
2.
Lyra-MPI system is a MPI executing environment for multi-clusters;it optimizes the point-to-point communication and the collection communication performance separately through dynamic virtual connection and topology-aware collection algorithms,and suppo.
采用动态虚连接技术优化了点点通信的性能,并采用拓扑感知的聚合优化算法优化了全局通信,实现了多域MPI运行环境Lyra-MPI,支持MPI2。
3.
A new topology-aware algorithm TaP2P is proposed and implemented in this paper.
针对此问题,提出一种拓扑感知的对等网组织算法,称之为TaP2P(Topology-aware Peer-to-Peer),根据节点到数据源的距离动态调整节点在覆盖图中位置,使数据转发路径符合网络物理拓扑。
4) Topological Perception
拓扑知觉
1.
Then, the theory of topological perception and visual invariance with their experimental phenomena were uniformly reinterpreted by this new theory.
本文从傅里叶光学出发,将人眼晶状体理想化为一个正透镜傅里叶分析器,从频域信息变换角度,提出视觉频率多通道理论,设计实验证实空间频率通道的存在,分析特性,并用图像的空间频率特性来重新解释拓扑知觉理论及其相关实验和空间不变性理论及其相关实验,找到现有两大矛盾的视觉认知理论间的联系,创新性地提出“初期的视觉认知过程也很可能是从物体的整体空间频率信息开始的”这一观点。
5) topology aware
拓扑感知
1.
We focused on the working principle of Chord network, and according to the topology mismatch problem in Chord, this dissertation designed a Quasi-Chord model, which can be topology aware, and propose a new routing table structure and some key algorithms.
并重点研究了Chord网络的工作原理,针对Chord网络中的拓扑不匹配问题,本文设计了一种能够拓扑感知的Quasi-Chord模型,并提出了新的路由表结构及几种关键算法。
6) topology identification
拓扑辨识
1.
The residual analysis method is generalized to topology identification for power electronics circuits (PEC) in this work.
该文将残差分析推广应用到电力电子电路的拓扑辨识当中。
2.
Based on incidence matrix,a new method was developed for network topology identification.
提出一种基于关联矩阵的网络拓扑辨识方法。
3.
An algorithm of fault section diagnosis based on topology identification for distribution networks is presented.
针对配电网存在T接点的情况 ,提出了基于拓扑辨识的配电网故障定位算法。
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条