1) submultiple periodic functions
因子周期函数
1.
This paper studies the submultiple periodic functions and explores its basic nature,then testifies the sufficient conditions of least right submultiple period,finally puts forward three study directions of submultiple periodic functions.
本文研究了一类称之为因子周期函数的函数,讨论了它的一些基本性质,证明了最小顺向因子周期存在的充分条件,最后提出了进一步研究因子周期函数的三个方向。
2.
This paper studies the relation between submultiple periodic functions and periodic functions.
研究了因子周期函数与周期函数的关系,通过分析构建了因子周期函数与周期函数的一一对应关系。
3.
In this paper,the authors study integral nature of submultiple periodic functions and give some examples.
研究了因子周期函数的积分性质,并例举了具体的例子。
2) periodic function
周期函数
1.
Some conclusions on periodic function;
关于周期函数的一些结果
2.
By constructing periodic function, the periodic demand of Fourier transformation will be meeted.
该方法通过构造周期函数,满足了频域法中进行Fourier变换的周期性条件,从而克服了经典频域三点法中直线形状误差的非封闭性、非周期性以及端点的不连续而引起的高阶谐波分量失真等边缘效应。
3.
We mainly use the Brouwer s theorem getting sufficient conditions for the existence of a unique asyptotically stable periodic solution to two competition species when the intrinsic growth rates are periodic functions of time.
利用不动点定理得到了两竞争物种当自然增长率为t的周期函数时唯一、稳定的正周期解存在的充分条
3) period function
周期函数
1.
Under a first integral curve is genus 1,the period function of quadratic reversible systems is monotonious,through the research on the monotonicity of the period function of a class of quadratic reversible systems,by the use of the Picard-Fuchs equation method in this paper.
利用Picard-Fuchs方程,研究了一类二次可逆系统周期函数的单调性问题,获得了在首次积分曲线是亏格1时的二次可逆系统周期函数单调的结论。
2.
This thesis of Master is composed of four chapters,which mainly studies several kinds of the second order nonlinear differential equations about the oscillatory and asymptotic behavior of solutions,the existence of limit cycles and the period function of a center.
本硕士论文由四章组成,主要讨论了几类二阶非线性微分方程解的振动性与渐近性,极限环的存在性以及中心的周期函数的单调性。
3.
Firstly,the period function can be written as T(ρ,ε)=2π+(?)T_i(ρ)ε~i,andthen the formulas for T_i(ρ) is given.
讨论了一类平面多项式系统的周期函数的临界周期的个数。
4) periodic functions
周期函数
1.
This paper is intended to make a systematic study of periodic functions and to popularize them in teaching and learning.
周期函数的周期性是中学数学中的教学内容,掌握了函数的周期性,对函数性质的研究会带来不少方便。
2.
This paper studies the relation between submultiple periodic functions and periodic functions.
研究了因子周期函数与周期函数的关系,通过分析构建了因子周期函数与周期函数的一一对应关系。
6) ω periodic functions
ω周期函数
补充资料:Besicovitch殆周期函数
Besicovitch殆周期函数
esicovitdi almost-periodic functions
Besi句讨叻殆周期函数【Besico,i的习m以一Peri诫c血n比姗;欣,胭口”幼洲旧.,”“uep即朋犯e哪中洲.明.] 一类殆周期函数(尸一a.p.),在其中一个与Riesz一Fischer定理类似的定理成立:任意一个满足条件 艺}a。}’<00的三角级数 艺a。。,、·必是某个宁殆周期函数的Fourier级数.这类函数的定义“11,【21)以殆周期(almost一period)概念的推广为基础,而且必须引进某些附加的概念.实数集E称为充分齐性的,如果存在数L>0,使得E的元素落在长度为L的区间中的最多个数与落在长度也是L的区间中的最少个数之比小于2.充分齐性集也是相对稠密的.在实轴的任意有限区间上p次幂可积的复值函数f(x)(一田
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条