1) most value question
最值问题
1.
Continual form function most value question and its solution method;
连续型函数的最值问题及其解法
2) maximum(minimum) problem
最大(最小)值问题
3) issue of extreme value of motility
运动性最值问题
4) inverse optimal value problem
最优值反问题
5) the inverse optimal value problem
逆最优值问题
1.
In order to provide a quantitative analysis method for enterprises management innovation, the inverse optimal value problem is discussed under the linear economic systems assumptions.
为了给出一种企业管理创新的数量分析方法,本文探讨了线性经济系统假设下的一类逆最优值问题,研究了其求解算法,并作了案例上的分析与检验。
6) Min-Max problem
最大值最小化问题
1.
Linear programming method for solving some Min-Max problems;
解一类最大值最小化问题的线性规划方法
补充资料:边值问题,偏微分方程数值解法
边值问题,偏微分方程数值解法
oundary value problent, numerical methods for partial differential equaSHOE)
边值问颐,偏徽分方程数值解法【加明山叮初uep叻-lem、。umeri因meth.xls for pa币ai diffe比n柱目equa-ti姗月,留.田,劫.明,姗叨姗砚Mer卿职汕p口..,姗朋”》钾…丽e,a门旧‘IM一贝扣叱坦卿,曰M“」 近似解法,所得问题的解用数值表表示.边值间题的(用显式公式、级数等等表达的)精确解仅在极少情形可以建立.在近似解法中应用最广泛的是差分方法(见【lj);它们可应用于最一般的问题且在电子计算机上实现很方便差分方法的本质在于将自变量变化的原来区域用离散的点集—网格来代替,而在方程和边界条件中出现的导数用在此网格点上的差商来秋替,由此原问题就化为有限个(线性的或非线性的)代数方程的组,称之为差分格式‘差分格式的解就取作原间题的近似解,近似解的精确度依赖于逼近方法和网格的精细,即依赖于网格点充满原来的区域的稠密程度下面将只考虑偏微分方程的线性边值问题,而且原问题假定是适定的为了证明差分方法是正确的,就得研究差分问题的适定性和当网格缩小时它的收敛性.差分问题称作适定的(wen~1力sed),如果对任意的右端它的解都存在、唯一且稳定.差分格式的稳定性理解为它的解连续地依赖于右端,且关于网格步长是一致的. 例如,在具有边界f的正方域G二{o<、。‘
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条