1) Extragalactic radio outburst
河外射电爆发
2) radio bursts
射电爆发
1.
The main conclusions include: 1) Under the approximations of Dulk et al(1982),the parallel and perpendicular components of the magnetic field in the sources of radio bursts are calculated self-consistently,and 2-dimensional distribution was obtained firstly.
主要结论可归纳为:1)在Dulk等人(1982)的近似下自恰计算射电爆发源区磁场的平行和垂直分量,并首次得到该磁场在日面的两维分布。
2.
After analyzing 158 radio bursts observed from September 2000 to September 2001 with the 0.
5GHz太阳射电频谱仪2000年9月至2001年9月取得的158个射电爆发,发现其中约有65%存在4类不同类型的快速精细结构(FFS):毫秒尖峰辐射、Ⅲ型爆发、准周期脉动、慢漂移结构。
3.
It is shown in this paper that the solar radio bursts originate not only from flares but also from coronal mass ejections (CMEs) or CME flare combinations, based on the data of recent space and ground besed solar observations.
本文分析了近二十年来的地面和空间太阳有关观测资料,得出太阳射电爆发的起因为耀斑和/ 或日冕物质抛射(CME) 而不仅仅是耀斑,这将有利于更深刻地了解太阳射电爆发和共生高能现象的物理过
3) radio burst
射电爆发
1.
The analyses of characteristics of moving type Ⅳ dm burst and the starting sequence of radio bursts at multi-band may indicate that this accompanied white-light flare (WLF) and the radio bursts are activated by the same accelerated electrons from lower corona.
从射电运动Ⅳ型爆发的特征和多频射电爆发开始时序的分析可以看出这个伴生的白光耀斑( W L F) 和射电爆发同是由低日冕的加速电子激活,可能通过非热电子沉降能量于色球层, 产生了色球层压缩波, 又经二步能量传输过程在上光球层导致 W L F。
2.
olar radio burst is a kind of manifestation of solar flare in radio wavelength band.
太阳射电爆发是太阳耀斑在无线电波段的一种表现,并相当敏感地反映了耀斑的能量释放过程。
3.
The exciter functions of the radio bursts observed on May 21, 1990 at 2840 MHz and 2640 MHz have been obtained by means of this method.
本文利用傅里叶变换解卷积积分的方法,分析了1990年5月21日北京天文台2840MHz和2640MHz的射电爆发资料,分别求出了它们的激励函数。
4) extragalactic radio sources
河外射电源
1.
The total(αT),core αC and extended(αE) spectral indices and core-dominance parameter(R) at 6 cm were calculated for a sample of 57 extragalactic radio sources.
给出了一个含57个河外射电源样本,计算了其在6 cm波段的核主导系,以及各源总辐射、核辐射及延展元辐射的谱指数。
2.
The first observation of 23 extragalactic radio sources was conducted in November 1992.
首次观测是在1992年11月期间进行的,共观测了23个河外射电源,获得了20个河外射电源的VLBI高分辨率的射电图象。
6) explosive electron emission
爆炸电子发射
1.
The electron gun can be divided into explosive electron emission (EEE), anode plasma (AP) and oriented magnetic field.
电子束产生部分由爆炸电子发射阴极、等离子体阳极及导向磁场构成。
补充资料:河外射电
银河系以外各种天体发出的射电的总称。河外射电的研究范围极为广泛。至今已经发现的射电源大部分可能都是河外射电源。虽然其中大都还没有与光学天体相证认,但是它们可能都对应于遥远的河外星系、类星体、星系团等。河外射电有以下几种:
正常射电星系射电 这些射电源发出的射电总功率差不多和银河系的射电总功率相同,约为每秒1037~1041尔格。人们发现的第一个正常射电星系是仙女星系(M31),它的射电总功率约为每秒1038尔格,距离约为220万光年。用射电观测也能得到它的旋涡星系图像。因为旋臂体积小,所以旋臂的射电只有星系冕射电的十分之一。根据射电频谱可知,M31的射电也起源于同步加速辐射机制。
特殊射电星系射电 射电功率要比正常星系的射电功率高102~106倍。1948年发现的第一个特殊射电星系是天鹅座A射电源(图1),它每秒钟发出的射电能量为太阳每秒钟发出的亿亿倍以上,是一个非常强的射电天体,距离约为109光年。1954年经光学观测发现,在天鹅座A射电源的位置上有两个暗弱的星系连接在一起。当时认为是两个星系正在相撞,但经过更多的观测,一般认为有一条暗尘带通过它的中心使它分成两部分。特殊射电星系在光学星系范围外一般具有两个射电发射云(或称射电子源),虽然星系核也发出射电,但射电星系的射电多数不是来自星系核本身,而是来自星系两侧的两个巨大的云。截至1979年止,已发现的最大射电源3C236,两个云位于总长达2,000万光年的距离上。第二个大的射电源DA240,长达700万光年(图2)。射电星系核产生巨大的能量,其产生过程还不清楚。射电子源的能量一定来自星系核,子源以同步加速辐射过程产生射电。七十年代以来,在星系团中发现了一种"头尾星系"的射电。这种星系有一个非常亮的射电头,还有一条拖得很长的较暗一些的尾巴(3C129的射电尾长达260万光年,图3)。典型的例子是英仙星系团中的两个天体NGC1265和IC310。它们的尾巴可能是由于星系在星系际物质中运动而拖出来的。观测还发现NGC1265的头和尾都是射电双源。随着甚长基线干涉仪的使用,不断发现河外射电源具有小到0奬001的好几个小子源的复杂结构和形态。这些子源在厘米波段有特别强的亮度,并且在几星期至几个月内改变射电强度。
河外星系中性氢原子射电和星际分子射电 1951年发现银河系的中性氢21厘米谱线射电后,不久又发现河外星系的此种射电。最靠近我们的较大的河外星系是大、小麦哲伦云,距离分别为16万和19万光年。它们的射电图像比光学图像大得多,因为这两个星系外面包着很大的氢气冕。通过射电观测发现两个星系之间以及它们与银河系之间存在着大量弥漫物质。大麦哲伦云和小麦哲伦云的星际氢质量分别占它们的总质量的9%和32%,而银河系的中性氢只占总质量约4%。因为有多得多的氢尚未凝聚成恒星,所以大、小麦哲伦云比银河系年轻得多。至今已在河外星系中观测到水、氨和一氧化碳等的分子谱线射电。
类星射电源射电 六十年代初发现的这种新型天体都有很大的红移,到1979年已知一千多个,红移从0.036到3.53,大部分类星射电源的红移大于1.0。它们从光学上看很象恒星,少数伴随有纤维状的星云状物质。约有40%的类星射电源具有双源结构,大多数射电是同步加速辐射。它们的射电光度有最亮的特殊射电星系那么亮,而在可见光波段则比最亮的椭圆星系还要亮得多。几乎所有类星射电源都是变源,射电和可见光都在变化,变化是不规则的,用甚长基线干涉仪已观测到,同一个类星射电源内不同的部分存在不同的变化。这是一种小尺寸的极亮天体在几个月或更短的时间内显示能量输出的巨大变化,而且是在仅有银河系1017分之一的体积内释放出100倍于银河系的能量。它们可能是遥远星系的活动星系核。
微波背景射电 1964年,人们在改进卫星通信的工作中,在7.35厘米波长上发现有温度约3.5K的射电背景,后来在从远红外直到75厘米的宽波段内,在天空的各个方向上都发现有这种射电背景。通过精确测量,证明温度为2.7K,也就是说在宇宙空间普遍存在着微波背景辐射。这一发现推翻了以往认为星际空间的温度为绝对零度,因而不可能有能量辐射的错误见解;另一方面,对宇宙学的研究提供了重要的资料。
参考书目
A.G.Pacholczyk,Radio Galaxies, Pergamon Press, Oxford, 1977.
正常射电星系射电 这些射电源发出的射电总功率差不多和银河系的射电总功率相同,约为每秒1037~1041尔格。人们发现的第一个正常射电星系是仙女星系(M31),它的射电总功率约为每秒1038尔格,距离约为220万光年。用射电观测也能得到它的旋涡星系图像。因为旋臂体积小,所以旋臂的射电只有星系冕射电的十分之一。根据射电频谱可知,M31的射电也起源于同步加速辐射机制。
特殊射电星系射电 射电功率要比正常星系的射电功率高102~106倍。1948年发现的第一个特殊射电星系是天鹅座A射电源(图1),它每秒钟发出的射电能量为太阳每秒钟发出的亿亿倍以上,是一个非常强的射电天体,距离约为109光年。1954年经光学观测发现,在天鹅座A射电源的位置上有两个暗弱的星系连接在一起。当时认为是两个星系正在相撞,但经过更多的观测,一般认为有一条暗尘带通过它的中心使它分成两部分。特殊射电星系在光学星系范围外一般具有两个射电发射云(或称射电子源),虽然星系核也发出射电,但射电星系的射电多数不是来自星系核本身,而是来自星系两侧的两个巨大的云。截至1979年止,已发现的最大射电源3C236,两个云位于总长达2,000万光年的距离上。第二个大的射电源DA240,长达700万光年(图2)。射电星系核产生巨大的能量,其产生过程还不清楚。射电子源的能量一定来自星系核,子源以同步加速辐射过程产生射电。七十年代以来,在星系团中发现了一种"头尾星系"的射电。这种星系有一个非常亮的射电头,还有一条拖得很长的较暗一些的尾巴(3C129的射电尾长达260万光年,图3)。典型的例子是英仙星系团中的两个天体NGC1265和IC310。它们的尾巴可能是由于星系在星系际物质中运动而拖出来的。观测还发现NGC1265的头和尾都是射电双源。随着甚长基线干涉仪的使用,不断发现河外射电源具有小到0奬001的好几个小子源的复杂结构和形态。这些子源在厘米波段有特别强的亮度,并且在几星期至几个月内改变射电强度。
河外星系中性氢原子射电和星际分子射电 1951年发现银河系的中性氢21厘米谱线射电后,不久又发现河外星系的此种射电。最靠近我们的较大的河外星系是大、小麦哲伦云,距离分别为16万和19万光年。它们的射电图像比光学图像大得多,因为这两个星系外面包着很大的氢气冕。通过射电观测发现两个星系之间以及它们与银河系之间存在着大量弥漫物质。大麦哲伦云和小麦哲伦云的星际氢质量分别占它们的总质量的9%和32%,而银河系的中性氢只占总质量约4%。因为有多得多的氢尚未凝聚成恒星,所以大、小麦哲伦云比银河系年轻得多。至今已在河外星系中观测到水、氨和一氧化碳等的分子谱线射电。
类星射电源射电 六十年代初发现的这种新型天体都有很大的红移,到1979年已知一千多个,红移从0.036到3.53,大部分类星射电源的红移大于1.0。它们从光学上看很象恒星,少数伴随有纤维状的星云状物质。约有40%的类星射电源具有双源结构,大多数射电是同步加速辐射。它们的射电光度有最亮的特殊射电星系那么亮,而在可见光波段则比最亮的椭圆星系还要亮得多。几乎所有类星射电源都是变源,射电和可见光都在变化,变化是不规则的,用甚长基线干涉仪已观测到,同一个类星射电源内不同的部分存在不同的变化。这是一种小尺寸的极亮天体在几个月或更短的时间内显示能量输出的巨大变化,而且是在仅有银河系1017分之一的体积内释放出100倍于银河系的能量。它们可能是遥远星系的活动星系核。
微波背景射电 1964年,人们在改进卫星通信的工作中,在7.35厘米波长上发现有温度约3.5K的射电背景,后来在从远红外直到75厘米的宽波段内,在天空的各个方向上都发现有这种射电背景。通过精确测量,证明温度为2.7K,也就是说在宇宙空间普遍存在着微波背景辐射。这一发现推翻了以往认为星际空间的温度为绝对零度,因而不可能有能量辐射的错误见解;另一方面,对宇宙学的研究提供了重要的资料。
参考书目
A.G.Pacholczyk,Radio Galaxies, Pergamon Press, Oxford, 1977.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条