说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 抛物线极值
1)  parabola extreme value
抛物线极值
2)  parabolic interpolation
抛物线插值
1.
Based on the computing methods of parabolic interpolation of function with one unknown, Visual FoxPro 6.
根据一元函数的抛物线插值算法 ,用VisaulFoxPro 6。
3)  interpolation parabola
插值抛物线
1.
In this paper, we discuss the relation between interpolation parabolas and the asymptotic parabola of a plane curve, and prove that if a family of interpolation parabolas of a plane curve has a limit curve then this limiting curve must be the asymptotic parabola of this curve.
研究了平面曲线的插值抛物线与渐近抛物线的关系,证明了平面曲线的插值抛物线的极限位置(如果存在)必是该曲线的渐近抛物线。
4)  parabolic maximal principle
抛物极值原理
1.
The caloric functions and parabolic maximal principles in upper spaces are studied.
研究上半空间的热函数及其抛物极值原理 ,证明了在边界上为 0的热函数恒等于 0 。
5)  parabolic interpolation
抛物线插值法
1.
Ritz variation method was used to find the numerical relation between the energy near the ground-state of the hydrogen molecular ion H 2 + and the changes of the variation parameter and the bond length,the computation formula of bond length and ground-state energy for H 2 + was also obtained by means of the method of parabolic interpolation.
用Ritz变分法求出了氢分子离子H2 + 基态能量附近的能量随变分参数和分子键长变化的数值关系 ,并用抛物线插值法获得了H2 + 键长和基态能量的值及其计算公式 ,比文献 [1,2 ]更接近于实验值。
2.
Applying the least square method and parabolic interpolation to the granualanalysis of soil, this paper gives the method and procedure of computer processing of experimental data.
本文将最小二乘法和抛物线插值法应用于土壤颗粒分析,给出了试验数据的计算机处理方法和步骤。
6)  weighted parabolic interpolation
加权抛物线插值
1.
In this paper,the weighted parabolic interpolation algorithm is firstly improved,and then a new algorithm to magnify images is proposed,which combine the improved weighted parabolic interpolation algorithm and discrete wavelet transformation to realize the image magnification.
论文首先对加权抛物线插值算法进行了改进,在此基础上提出一种加权抛物线插值结合小波变换的图像放大算法,并对小波变换后的小波系数低频带作了幅值增强处理。
补充资料:Neil抛物线


Neil抛物线
Nal parabola

N‘抛物线汇N斑钾,加.;~‘。,一一j 半立方抛物线(~一cubicP肚川刀la),因W .Ne江 ‘击工’‘明生资出这一曲线的弧长.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条