1) caibration of seismograph
地震仪器标定
2) calibrating seismograph
地震仪标定
3) seismic instrument orientation
地震仪器定向
4) Seismograph
[英]['saizməɡrɑ:f] [美]['saɪzmə,ɡræf]
地震仪器
1.
Simultaneous data acquisition of seismograph;
地震仪器数据采集同步技术
2.
For modern seismographs, not only the used operation system software platform is stored and installed in hard disk, but also the acquired seismic data are directly stored in hard disc for some seismograph system.
硬盘及其系统的任何故障,都可能会造成计算机系统,乃至整个地震仪器系统工作的瘫痪,由于各种不同原因而造成的硬盘数据文件的丢失就是其中比较严重的故障和问题。
3.
The paper pointed out the basic technical requirement of high-density seismic acquisition for seismograph,summarized the property and technical feature of several current advanced seismographs as well as the situation using these seismographs for high-density exploration in China.
本文分析了高密度地震采集对地震仪器的基本技术要求,总结了目前几种先进的地震勘探仪器的性能和技术特点,以及国内使用这几种仪器进行高密度勘探的情况。
5) seismic instrument
地震仪器
1.
Absorption and attenuation of stratum and recording performance of seismic instrument.;
地层吸收衰减与地震仪器记录性能
2.
They are the key means for verificating and calibrating seismic apparatus and device periodically to ensure the accuracy of measurement data and guarantee the quality of seismic instrument product.
检定与校准是评定测量器具、装置是否满足预期要求的两种方法,对地震测量器具、装置进行周期检定或者校准是确保测量数据正确,保证地震仪器产品质量的一个重要手段。
6) seismic calibration
地震标定
1.
But traditional calibration methods can not satisfy the requirements of seismic calibration jobs in the face to various well logs data with different quality and sources.
面对各种质量和来源的测井资料,传统的测井数据处理方法已难以满足地震标定的要求。
补充资料:地震仪器
记录地面振动的仪器。地面运动是由质点的移动矢量的3个分量和绕质点3个转动量来确定的。在离震源较远处,当地震波通过时,由于波长比质点运动的振幅大得多,故转动量很小。因此到目前为止,通常仅记录移动的3个分量,而在震源附近,则除记录移动的3个分量外,尚需记录3个转动量。由最弱到最强的天然地震,以及各种人工爆炸和其他干扰所引起的地面运动,其频率范围约在 0.0003~100赫之间,振幅变化范围可达 109 。因此需要设计不同类型的地震仪,以满足各方面的需要。就基本原理而言,目前广泛使用的是摆式地震仪。
仪器原理 摆式地震仪用来测量大地和一个同大地松耦合的惯性质量间的相对运动。为记录这种相对运动,在低倍率或低灵敏度的地震仪中,常采用简单的机械杠杆或光杠杆放大。在高倍率或高灵敏度地震仪中,则利用换能器(动圈式、电容式、磁阻式等)将机械量转换成电量后,采用电流计放大或电子放大器放大。
目前在中国的基准地震台上,广泛使用带动圈换能器的摆式地震仪。一个装在摆上的线圈,可在与机架(固定于地面)相连结的磁系统所形成的气隙磁场内运动。产生的电动势,或推动一个带镜片的电流计线圈,而后用光学的方法将线圈的偏转量记录在照相纸上,或输入电子放大器内进行电压的功率放大,以推动记录装置进行热敏记录或墨水记录。
摆式地震仪的运动方程是
式中x为摆的位移;z为地面位移;ε0为摆的阻尼常数;ω0为摆的固有频率。若已知地面位移z,则当给定摆的参数后,即可由上式算出摆的位移x。反之,可由摆的位移x求得z。例如,设z=Asinωt,A为最大振幅,ω为地面作稳态正弦运动的圆频率,于是就可得到摆式地震仪的振幅频率特性
和相位频率特性
,选择不同的ε0和ω0, 就可得到各种所需的振幅频率特性和相位频率特性。例如,若取ε0≈0.7ω0,则在ω大于ω0的频率范围内,U≈1,该地震计为位移计。在ω小于ω0的频率范围内,U将随ω2而增大,该地震计称为加速度计。若取ε0=10ω0,则在ω为0.1ω0至10ω0的频率范围内,U将随ω 而增大,该地震计称为速度计。
地震仪的类型 由于地面运动的频率范围很宽,振幅变化范围也很大,大地常时振动(干扰和脉动)的振幅也随频率而异,故不可能用一个地震仪将所有的地面运动都记录下来。为此就需选用各种不同的记录频率、不同的灵敏度或放大倍数的地震仪(见图)。低放大倍数的加速度计可用于在震源区记录强震。高放大倍数的短周期地震仪可用于在地震活动区内记录微震。放大倍数在千、百倍级的宽频带中周期地震仪可用于记录近震。千倍级的长周期地震仪用于记录远震。超长周期地震仪用于记录地球的自由振荡。在松软的沉积层覆盖很厚的地区,在大工业城市附近,地面上短周期(小于 1秒)干扰很大,但随深度衰减很快。因此在这类地区,为观测微震,就需选用高放大倍数的井下短周期地震仪。
新技术在地震仪中的应用 从20世纪60年代中期开始,在地震仪中引入了许多新技术,从而提高了地震仪的各项性能指标。采用电子放大和负反馈相结合的技术,构成一个成闭环的反馈地震仪,不仅能很方便地改变地震仪的各项参数,并能在很大程度上提高这些参数对周围环境变化的稳定性,扩大了能保证有一定记录精度的动态范围。例如在加速度计的摆上安装差分电容换能器,其输出经电子放大后反馈到装在同一摆上的动圈换能器,产生"电弹簧"效应,提高了摆的固有频率,扩大了记录频带。同时由于负反馈,使摆的零位的变化范围很小,故提高了线性度和记录精度。又如采用电子放大将装在短周期或中周期摆上的动圈换能器的输出放大后,经微分电路反馈至另一个动圈换能器,这样就能增长摆的固有周期,延伸了记录频带的长周期部分,同时也避免了在长周期地震仪中所常遇到的零位漂移问题。
70年代以来发展起来一套地震台阵和地震台网所使用的新技术。这套技术是采用有线或无线(包括卫星)通信方法,将台网内无人值守观测点上的地震仪所拾取的模拟地震信号,经放大或转换成数字,再经调制后传输到一个记录处理中心,进行模拟可见记录和磁带记录,并送入电子计算机进行自动实时处理或脱机处理,来提取所需要的信息。它为地震学的研究提供了大量的基本数据。
在流动地震仪、地震勘探用地震仪和各种海底地震仪(自浮式、抛锚式和电缆式等)中,广泛使用微处理机、自动调节量程和数字磁带记录技术。用微处理机来判别和检测地震事件并控制数字磁带机的启停,将有用的地震信号经模数转换器转换成数字信号,按电子计算机所要求的编排格式记录在磁带上,可提高磁带的利用率,节省保存磁带的空间和维护费用。自动增益调节和数字磁带记录大大地超过了以往各种记录设备的记录精度和动态范围,同时也为进一步输入电子计算机处理提供了很大的方便。(参见彩图)
仪器原理 摆式地震仪用来测量大地和一个同大地松耦合的惯性质量间的相对运动。为记录这种相对运动,在低倍率或低灵敏度的地震仪中,常采用简单的机械杠杆或光杠杆放大。在高倍率或高灵敏度地震仪中,则利用换能器(动圈式、电容式、磁阻式等)将机械量转换成电量后,采用电流计放大或电子放大器放大。
目前在中国的基准地震台上,广泛使用带动圈换能器的摆式地震仪。一个装在摆上的线圈,可在与机架(固定于地面)相连结的磁系统所形成的气隙磁场内运动。产生的电动势,或推动一个带镜片的电流计线圈,而后用光学的方法将线圈的偏转量记录在照相纸上,或输入电子放大器内进行电压的功率放大,以推动记录装置进行热敏记录或墨水记录。
摆式地震仪的运动方程是
式中x为摆的位移;z为地面位移;ε0为摆的阻尼常数;ω0为摆的固有频率。若已知地面位移z,则当给定摆的参数后,即可由上式算出摆的位移x。反之,可由摆的位移x求得z。例如,设z=Asinωt,A为最大振幅,ω为地面作稳态正弦运动的圆频率,于是就可得到摆式地震仪的振幅频率特性
和相位频率特性
,选择不同的ε0和ω0, 就可得到各种所需的振幅频率特性和相位频率特性。例如,若取ε0≈0.7ω0,则在ω大于ω0的频率范围内,U≈1,该地震计为位移计。在ω小于ω0的频率范围内,U将随ω2而增大,该地震计称为加速度计。若取ε0=10ω0,则在ω为0.1ω0至10ω0的频率范围内,U将随ω 而增大,该地震计称为速度计。
地震仪的类型 由于地面运动的频率范围很宽,振幅变化范围也很大,大地常时振动(干扰和脉动)的振幅也随频率而异,故不可能用一个地震仪将所有的地面运动都记录下来。为此就需选用各种不同的记录频率、不同的灵敏度或放大倍数的地震仪(见图)。低放大倍数的加速度计可用于在震源区记录强震。高放大倍数的短周期地震仪可用于在地震活动区内记录微震。放大倍数在千、百倍级的宽频带中周期地震仪可用于记录近震。千倍级的长周期地震仪用于记录远震。超长周期地震仪用于记录地球的自由振荡。在松软的沉积层覆盖很厚的地区,在大工业城市附近,地面上短周期(小于 1秒)干扰很大,但随深度衰减很快。因此在这类地区,为观测微震,就需选用高放大倍数的井下短周期地震仪。
新技术在地震仪中的应用 从20世纪60年代中期开始,在地震仪中引入了许多新技术,从而提高了地震仪的各项性能指标。采用电子放大和负反馈相结合的技术,构成一个成闭环的反馈地震仪,不仅能很方便地改变地震仪的各项参数,并能在很大程度上提高这些参数对周围环境变化的稳定性,扩大了能保证有一定记录精度的动态范围。例如在加速度计的摆上安装差分电容换能器,其输出经电子放大后反馈到装在同一摆上的动圈换能器,产生"电弹簧"效应,提高了摆的固有频率,扩大了记录频带。同时由于负反馈,使摆的零位的变化范围很小,故提高了线性度和记录精度。又如采用电子放大将装在短周期或中周期摆上的动圈换能器的输出放大后,经微分电路反馈至另一个动圈换能器,这样就能增长摆的固有周期,延伸了记录频带的长周期部分,同时也避免了在长周期地震仪中所常遇到的零位漂移问题。
70年代以来发展起来一套地震台阵和地震台网所使用的新技术。这套技术是采用有线或无线(包括卫星)通信方法,将台网内无人值守观测点上的地震仪所拾取的模拟地震信号,经放大或转换成数字,再经调制后传输到一个记录处理中心,进行模拟可见记录和磁带记录,并送入电子计算机进行自动实时处理或脱机处理,来提取所需要的信息。它为地震学的研究提供了大量的基本数据。
在流动地震仪、地震勘探用地震仪和各种海底地震仪(自浮式、抛锚式和电缆式等)中,广泛使用微处理机、自动调节量程和数字磁带记录技术。用微处理机来判别和检测地震事件并控制数字磁带机的启停,将有用的地震信号经模数转换器转换成数字信号,按电子计算机所要求的编排格式记录在磁带上,可提高磁带的利用率,节省保存磁带的空间和维护费用。自动增益调节和数字磁带记录大大地超过了以往各种记录设备的记录精度和动态范围,同时也为进一步输入电子计算机处理提供了很大的方便。(参见彩图)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条