说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 最大广义逆
1)  maximalgeneralized inverse
最大广义逆
2)  Best generalized inverse
最佳广义逆
3)  maximum generalized inverse
极大广义逆
1.
Relations tetween generalized inverse,maximum generalized inverse and reciprocal generalized inverse were obtained.
主要给出了布尔群代数BG中的元有广义逆的充要条件及广义逆的结构定理 ,给出了求全部广义逆的一种算法 ,并指出了广义逆、极大广义逆与互反的广义逆间的关系 。
4)  minimal norm g-inverse
最小范数广义逆
5)  least square generalized inverse
最小二乘广义逆
1.
Based on the relation between synergetic learning algorithms and generalized inverses,all the algorithms for computing least square generalized inverses can be considered as synergetic learning algorithms,which enriches the variety of synergetic learning algorithms considerably.
在讨论协同学习算法和广义逆关系的基础上,指出了最小二乘广义逆的求解算法都可以看作是协同学习算法,从而大大丰富了协同学习算法的种类。
6)  generalized maximum entropy
广义最大熵
1.
IA new method based on generalized maximum entropy is applied in estimating parameters of structural equation model,which is meant for situations with limited or incomplete data.
提出应用广义最大熵的方法对结构方程模型的参数进行估计,该方法能够处理有限的或者不完全数据。
2.
Aiming at generalized maximum entropy(GME) regression effect and especially the indetermination of the choice of support space of parameter and error in the model,the modelling process of GME regression method is analyzed,and its regression effect is compared with others effects through two cases in this paper.
针对广义最大熵回归方法的建模效果问题,尤其是模型中未知参数和误差项支持空间选择的不确定性问题,该文剖析了该方法的建模过程,并通过两个实例将该方法与其它建模方法的回归效果进行了对比分析。
3.
In this paper,a new method for limited or incomplete data based on generalized maximum entropy is applied to measure customer satisfaction.
本文提出了应用广义最大熵(Generalized Maximum Entropy,简称GME)的方法对顾客满意度进行测评,该方法能够处理有限的或者不完全数据。
补充资料:广义逆矩阵
      逆矩阵概念的推广。若A为非奇异矩阵,则线性方程组A尣=b的解为尣=A_1b,其中A的逆矩阵A_1满足AA_1=A_1A=I(I为单位矩阵)。若A是奇异阵或长方阵,A尣=b可能无解或有很多解。若有解,则解为尣=Xb+(I-XA)у,其中у是维数与A的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用Ag、A_或A等符号表示,有时简称广义逆。当A非异时,A_1也满足AA_1A=A,且。故非异阵的广义逆矩阵就是它的逆矩阵,说明广义逆矩阵确是通常逆矩阵概念的推广。
  
  1955年R.彭罗斯证明了对每个m×n阶矩阵A,都存在惟一的n×m阶矩阵 X,它满足:①AXA=A;②XAX=X;③(AX)*=AX;④(XA)*=XA。通常称X为A的穆尔-彭罗斯广义逆矩阵,简称M-P逆,记作A+。当A非异时,A_1也满足①~④,因此M-P逆也是通常逆矩阵的推广。在矛盾线性方程组A尣=b的最小二乘解中,尣=A+b是范数最小的一个解。
  
  若A是n阶方阵,k为满足的最小正整数(rank为矩阵秩的符号),记作k=Ind(A),则存在惟一的n阶方阵X,满足:
  
  (1) AkXA=Ak;(2) XAX=X; (3) AX=XA。通常称X为A的德雷津广义逆矩阵,简称D逆,记??Ad,A(d)或AD等。虽然它和线性代数方程组的解无关,但它在线性差分方程、线性微分方程、最优控制等方面都有应用。例如,设A、B是n阶方阵,齐次差分方程,如果存在一个数λ,使 存在,则它的一般解为
  式中q为任意n维向量;;。
  
  根据实际问题需要还定义了其他各种类型的广义逆矩阵,如网络理论中用到的博特-达芬逆矩阵等。一般说来,它们都具有下列一些性质:当A非异时,广义逆矩阵就是A_1;广义逆矩阵必存在;广义逆矩阵具有逆矩阵的某些性质(或适当修改后的性质),如(A_1)_1=A,(A_1)*=(A*)_1等等。
  
  广义逆的思想可追溯到1903年(E.)I.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。而任意矩阵的广义逆定义最早是由E.H.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。当时人们对此似乎很少注意。这一概念在以后30年中没有多大发展。曾远荣在1933年,F.J.默里和J.冯·诺伊曼在1936年对希尔伯特空间中线性算子的广义逆作过讨论。20世纪50年代围绕着某些广义逆的最小二乘性质的讨论重新引起了人们对这个课题的兴趣。1951年瑞典人A.布耶尔哈梅尔重新发现了穆尔所定义的广义逆,并注意到广义逆与线性方程组的关系。T.N.E.格雷维尔、C.R.拉奥和其他人也作出了重要的贡献。1955年,彭罗斯证明了存在惟一的X=A+满足前述性质①~④,并以此作为 A+的定义。1956年,R.拉多证明了彭罗斯定义的广义逆与穆尔定义的广义逆是等价的,因此通称A+为穆尔-彭罗斯广义逆矩阵。
  
  广义逆的计算方法大致可分为三类:以满秩分解和奇异值分解为基础的直接法,迭代法和其他一些常用于低阶矩阵的特殊方法。
  
  以A+的计算为例。若A是一个秩为r的m×n阶非零矩阵,记作,有满秩分解A=F·G,其中,则,即将广义逆矩阵的计算化为通常逆矩阵的计算。常用LU分解和QR分解等方法实现满秩分解,然后求出A+
  
  若A有奇异值分解A=UDV*,其中U、V为m阶和n阶酉矩阵,是m×n阶矩阵,是r阶对角阵,对角元是A的r个非零奇异值(AA*的非零特征值的平方根),则A+=VD+U*,其中是n×m阶矩阵。也可用豪斯霍尔德变换先将 A化为上双对角阵J0=P*AQ,然后再对J0使用QR算法化为矩阵D=G*J0h,于是A=(PG)D(Qh)*,故A+1=(Qh)D+(PG)*
  
  设λ1是AA*的最大非零特征值,若0<α<2/λ1,则计算A+的一个迭代法是x0=αA*,xn+1=(2I-Axn),当n→∞时,xn收敛于A+
  
  格雷维尔逐次递推法也是计算A+的常用方法。设A的第k列为αk(k=1,2,...,n),A11,Ak=(Ak-1k)(k=2,3,...,n),则
  ,式中
   ;
  ; 
  
  1955年以后,出现了大量的关于广义逆矩阵的理论、应用和计算方法的文献。70年代还出版了一些专著和会议录,指出广义逆矩阵在控制论、系统辨识、规划论、网络理论、测量、统计和计量经济学等方面的应用。
  
  

参考书目
   S.L.Campbell and C.D.Meyer,Jr.,Generalized Inverses of Linear TransforMations,Pitman,London, 1979.
   M.Z.Nashed, ed.,Generalized Inverses and Applications,Academic Press,New York,1976.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条