1) Taylor-expansion theorem
泰勒展开定理
2) taylor expansion
泰勒展开
1.
In order to determine the initial stress of pneumatic membrane structures in form-finding analysis in the condition that the internal pressure is given,the Taylor Expansion of a multivariable function is used to establish the volume differential equation.
为确定充气膜结构找形分析时,在内压已知情况下膜面张力的大小,根据多元函数泰勒展开公式推导了该类结构充气膨胀的体积微分方程,并由基于U。
2.
Using the rational Supposition for Taylor expansion of locating equation,the authors build up the error analysis model of cross locating algorithm for radar direction finding on the basis of analysis for factors influencing locating accuracy,and prove that the minimum mean square deviation estimation of space position of locating algorithm is unbiased.
利用双基地平面关系将空间三维问题降为平面二维处理;在分析影响定位精度因素前提下,采用合理的假定对定位方程泰勒展开,建立测向交叉定位算法的误差分析模型,并证明了测向交叉定位算法的空间位置最小均方差估计是无偏估计,通过仿真算例,可以看出建立的误差模型符合实际情况。
3.
In this paper the Taylor expansion is taken as a theoretical basis,high-order continuity of moving least-square method is further inherited,and Shepard interpolation is adopted to obtain the mobility from local r.
针对目前以移动最小二乘技术构造的无单元形函数需要大量的求逆运算,且在边界处无过点插值性质而给计算带来了困难的问题,以泰勒展开理论为基础,继承最小移动二乘法的高阶连续性,用Shepard插值实现"移动最小二乘法的由局部到整体区域的移动性"及"有限元法形函数过点插值性",旨在使无单元伽辽金法的形函数在满足高阶连续性的同时具有过点插值的性质,并避免了现有无单元伽辽金法形函数求解繁琐的缺点。
3) Taylor expansion
泰勒展开式
1.
Taylor expansion gives proof to the uniqueness theorem and the maximum modules principle, which is simple and clear at a glance, compared with the traditional proo
利用泰勒展开式证明了唯一性定理,最大模定理,与传统证明相比,具有简单、一目了然的特点。
2.
This paper is devoted to the study of the Taylor expansions of smooth functions on groups of Heisenberg type G , the Taylor expansions of smooth functions onG× R+ , and then existence and uniqueness for viscosity solutions of a kind of partialdifferential equations on groups of Heisenberg type.
本文研究了海森堡型群上一类Hamilton-Jacobi方程粘性解的存在性和唯一性,给出了光滑函数在海森堡型群G上的泰勒展开式和光滑函数在G×R~+上的泰勒展开式。
3.
By making use of the integral property of geometrically convex functions and geometrical convexity of the two exponential functions,this paper obtains two new estimation formulas of the remainder term in Taylor expansion of ex(x>0) and e-x(x>0),and two new inequalities.
利用几何凸函数的积分性质和二个指数函数的几何凸性,分别得到了ex(x>0)和e-x(x>0)的泰勒展开式余项的一个新的估计,得出了两个新的不等式,应用这两个新的不等式可以有效地改进一些影响较广的已知结果,并且对具有同样性质的祁锋不等式给出一个简证。
4) Taylor expansion
泰勒展开法
1.
Several enconomical methods in difference computation,which include the method of Taylor expansion, the splitting method, the method of compensated computation in deducted region, the method of self-controled time step, are discussed on the basis of difference scheme of explicit and complete square conservation.
其中包括:泰勒展开法、原始分解算法、区域“扣除──补偿”法以及自动调节步长法。
2.
Based on traditional three-order recursive Taylor expansion and four-order Range-Kuttle method,another effective method four-order Taylor expansion was proposed.
姿态算法是捷联惯导系统的关键部分之一在对传统三阶泰勒展开法和四阶龙格-库塔法分析的基础上,提出了另一种更有效的四阶泰勒展开法,并在典型圆锥运动环境下,对3种算法进行了姿态角误差仿真分析,从运算精度与速度上考虑,得出四阶泰勒展开法比三阶泰勒展开法和四阶龙格-库塔法都更具优势,为姿态算法的研究提供了参考。