2) the completely integrable system in the Liouville sense
Liouville完全可积系
3) Liouville completely integrable system
Liouville完全可积系统
4) Liouville integrability
Liouville可积
1.
By means of the trace identity the Hamilton structure of the equations is constructed and the Liouville integrability is also proved.
引入一个新的离散等谱特征值问题,导出相应的非线性微分-差分方程族,利用迹恒等式建立了方程族的Hamilton结构,证明了方程族是Liouville可积的。
2.
The Liouville integrability for the corresponding lattice system is demonstrated.
通过离散的零曲率表示导出了一个基于离散的矩阵谱问题的典型晶格孤子方程,同时证明了相应的晶格系统是Liouville可积的,进一步通过一个直接的办法给出了相应晶格系统的无穷多守恒律。
3.
Further,its Liouville integrability is also given.
给出一个2×2谱问题及其相应的孤子方程,并利用此孤子族的Lenard算子对的性质,证明了该系统是具有Bi-Hamilton结构的广义Hamilton系统,进一步给出其Liouville可积性的证明。
5) Liouville integrability
Liouville可积性
1.
This paper has listed some discrete integrable systems by the discrete zero curvature representation, and, some research such as the Liouville integrability, infinitely many conservation laws and integrable couplings have been investigated.
本文利用离散的零曲率表示的方法构造了几个新的离散的可积系统,并对离散的可积系统的Liouville可积性、无穷多守恒律、可积耦合系统作了研究。
6) Liouville integrable
Liouville可积
1.
A new hierarchy of Lax integrable and Liouville integrable generalized Hamiltonian equations;
一族新Lax和Liouville可积广义Hamilton方程
2.
One class of new loop algebra and its Liouville integrable hierarchy of evolution equations;
一类新的圈代数和它的Liouville可积演化方程族
3.
Starting from a isospectral problem and basing on the basis number and commutative relations of loop algerba,we propose a type of Liouville integrable system and its bi-Hamiltonian structure by the use of Tu Guizhang s model.
当位势选取特殊函数时,得到了著名的Schrodinger方程,广义MkdV方程,热传导方程和耦合的Burgers方程及其Hamiltonian结构,并证明方程是Liouville可积的。
补充资料:积积
1.长久累积。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条