1) singular distribution function
奇异型分布函数
1.
The relation between singular distribution function and its Lebesgue-Stieltjes measure is discussed in this paper.
本文讨论了R_1奇异型分布函数与其所产生的Lebesguc-Stieltjes测度的关系,给出了分布函数F(x)为奇异型的一个等价条件。
2) singular probability distributionn function
奇异概率分布函数
3) singular function
奇异函数
1.
Using program of singular function to calculate internal forces of bending pole;
利用奇异函数编程计算承弯杆件内力
2.
There is a mistake about singular function calculation in the book of "Electric Circuit",which is widely used as the textbook by many colleges.
在目前高校广泛使用的《电路》一书中,出现了一处关于奇异函数的计算疏忽:计算结果遗漏了冲激项。
3.
By means of singular functions, the equations of moment, torque and bending section modulus are given and the general expressions are derived for calculating the torsional stress, angle and deflection of the shaft under complex loads.
利用奇异函数描述轴的弯矩方程、扭矩方程和抗弯截面模量方程,推出在任何载荷作用下传动轴所受应力、转角和挠度的通用方程式,采用一维优化方法,借助计算机技术求解传动轴在复杂载荷作用下的强度与刚度,突破了传统求解方法,便于计算机编程处理,适应范围广,对受不同载荷以及含有不同几何形状的阶梯轴具有通用性,且可提高机械工程设计效率,具有较高的工程实用价值。
4) singularity function
奇异函数
1.
Method of establishing the deflection curve of a beam by singularity functions;
奇异函数建立梁挠曲线初参数方程的方法
2.
Study of the elastic mechanics problem in narrow rectanglar girder by the singularity function;
狭矩形截面梁弹性力学问题的奇异函数法研究
3.
Based on the improved story analysis model that is used to be widespread, the author sets up a new model with rigid-suspended-joints in core-tube suspended structure, and deduces flank-displacement rigidity matrix used singularity function.
对悬挂结构研究所广泛使用的吊点铰接的层间剪切模型进行了改进 ,建立了中央核筒式把吊点改为刚接的高层建筑悬挂结构体系的新的计算模型 ,利用奇异函数推导了结构的侧移刚度矩阵 ,并进行了动力特性分析 。
5) Singular vector distribution pattern
奇异向量分布型
6) singular distribution
奇异分布
补充资料:布朗斯台德-舒尔茨分布函数
分子式:
CAS号:
性质:高分子溶液处于两相平衡时,聚合物在浓相与稀相中的分布函数。其表达式为:式中φ2与φ21分别表示聚合物在稀相与浓相中的体积分数,x为聚合度, σ为两相分配系数,它是与溶剂在稀相与浓相的体积分数以及哈金斯参数x1,有关的参数。分布函数表明,如果降低温度或加入不良溶剂,改变x1值,使一定分子量的高分子在浓相中的体积分数明显超过在稀相中的体积分数,从而达到分级的目的。该函数对聚合物的溶解分级有指导意义。
CAS号:
性质:高分子溶液处于两相平衡时,聚合物在浓相与稀相中的分布函数。其表达式为:式中φ2与φ21分别表示聚合物在稀相与浓相中的体积分数,x为聚合度, σ为两相分配系数,它是与溶剂在稀相与浓相的体积分数以及哈金斯参数x1,有关的参数。分布函数表明,如果降低温度或加入不良溶剂,改变x1值,使一定分子量的高分子在浓相中的体积分数明显超过在稀相中的体积分数,从而达到分级的目的。该函数对聚合物的溶解分级有指导意义。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条