说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 除数
1)  ivisor
除数
1.
As for the problem of estimating the best upperbounds of divisors,a better upper bound for E,(x) is given.
设,其中把估计Eρ(x)的问题转化为某种三角和的估计问题,同时利用解析方法和Iwaniec及Mozzochi目前关于除数问题的最好上界估计给出Eρ(X)一个较精确的上界。
2)  divisor function
除数函数
1.
Using analytic methods the mean value of divisor function in the square-free number are studied,and a perfect asymptotic formula of this function is obtained.
利用解析的方法研究了除数函数d(n)在square-free数中的均值问题,并得到了关于这个函数的一个完美的渐近公式。
2.
The study of divisor and divisor function d(n) are the most basic and important in number theory.
若一个整数m可表示为正整数n与它的除数函数d(n)之商,则称m为优美指数。
3.
It is proved that there exist infinitely many positive integers n satisfying δ(n)/n>(d(a0)+d(a1)+…+d(ak))/(k+1),where ai(i=0,1,…,k) are all digits of the decimal notation of n,and d(ai)(i=0,1,…,k) is the divisor function of ai.
证明了:存在无穷多个正整数n,可使δ(n)/n>(d(a0)+d(a1)+…+d(ak))/(k+1),其中ai(i=0,1,…,k)是n的十进制表示中的所有数位上的数字,d(ai)(i=0,1,…,k)是ai的除数函数。
3)  digit by-digit division
数数相除
4)  removal function
去除函数
1.
Magnetorheological finishing tool and removal function;
磁流变抛光工具及其去除函数
2.
Controllability of removal function in the ion beam figuring process for optics mirrors;
光学镜面离子束加工去除函数工艺可控性分析
3.
Influence of the parameters of ion beam on the removal function in IBF process;
束流参数对光学镜面离子束加工去除函数的影响分析
5)  the removal function
去除函数
1.
The effect of the three kinds of material on the removal function is studied.
研究了计算机控制小工具抛光(CCOP)加工中三种常用的磨盘材料对去除函数特性的影响,进一步完善材料去除模型,用以指导光学零件的加工。
6)  removing function
去除函数
1.
The plane motion is discussed based on Preston equation,the workpiece is analog computed with the motion removing function.
利用Preston方程,对实际中的磨头运动方式(平转动)进行了讨论,并用此运动方式的去除函数对一工件进行了模拟计算,同时用目前大口径光学元件的评价参数P -V值,RMS值,以及波前梯度对模拟结果进行了分析。
2.
Kinematic principles were applied to deduce the removing function of polishing pad of dual-rotator mechanism according to the Preston assumption.
以Preston假设为基础 ,运用运动学理论推导了自研双转子机构的去除函数。
3.
The base concept for computer controlled optical polishing (CCOP) is the deciding of material removing function of the subaperture polishing pad.
抛光盘去除函数的确定是数控抛光技术的应用基础,以Preston 方程为基础,应用运动学原理推导了抛光盘在行星运动及平转动两种运动方式下的材料去除函数,并通过计算机模拟出相应的工作特性曲线。
补充资料:除数问题


除数问题
divisor probknts

【译注】关于D侧d山t除数问题,目前(1922)已知的最好结果是 0落华 22’这个结果是H.1协吸n篮‘与C.J.Mo左仪沥于1988年得到的(见IBI]).除数问题【击谁姗脚曲妇.;解~姗益nPo6~从] 数论中与求和函数 D(x)=艺:(n),众(x)=艺:*(n) n《x.‘x(其中,叮n)是n的除数个数,而、(n)(k)2)是表n为k个自然数乘积的表法数)及其变形的渐近性态有关的问题. D州比det除数问题(D俪c1旧et divisor problem).这是在渐近公式 艺:(n)=、hx+(ZC一l)x+△(x) 几落戈中余项△(x)的最佳估计问题,其中C是更加骊常数(E江ler cons切叮t).1849年P.D训d旧et首先考虑了和式 见:(n)=D(x) 八‘x的渐近式.他根据这个和等于在双曲线训二x下面具有正整数坐标的点(u,v)的个数这一事实证明了 。(x)=x inx+(ZC一l)x+o(石).这就是著名的羊于呼攀个攀的D州d旧et兮本(D泊比ilet几皿江场fort址力山川笼r of di油ors). 除数问题是典范之一,在这基础上估计各种类型扩展域内整点数的方法发展起来了,设口是关系式么x《x“中数“的最大下界.根据D州比亚t的结果,口(1/2 .r.O.Bo伪H成证明了0毛1/3.后来相继得到了下面的估计: ,33。,27。/15。,13 0(~念~,0簇箫,0(份,口共希· U一l田’U一82’“一46’一40△(x)的真正的阶还不知道(1988),依照某种假设有 △(x)<O,c>1,公式 C十盆丈 _、If。;、x, 刀月砚义l=,二--,,仁~15,-二-召S 一‘、一”2兀i。其。’、一,S成立.这里的被积函数在点s二1有一k级极点,具有形如xP*(inx)的残数,其中凡是k一1次多项式. 设 从(x)=x凡(inx)+△*(x),并设下‘<下<1,其中下*是使得 f丛鱼竺)~已、t<二. 一初!口一“l成立的数口的最大下界.则公式 ,十‘T 1二犷,、、xJ A(X)=气二一代~山nl乌’气S,一忿~45亏 。:、一2兀iT一。_叱,一、‘S ‘j“’一下一犷T与Mellin令术(Mellin fonTll血)的反转公式 兰边.一f△二。二、:一:己二,,一。+‘: s石皆成立,其中积分对于下*<『<1在均方意义下存在. 在关于Dk(x)的公式中,对余项△*(x)的估计与所期望的仍相距甚远(1988).对任意:>O,设“。是使 △*(x)<0,使得 气‘,一声,k一2,3,·…这个估计来自对乙(s)在临界带内的一个估计:对于1/2续‘(l,}tl)2,存在常数a>1,使得 乙(口+ir)<<}rl“(’一),‘’加1 r 1. 另一方面,E巨心y证明了 、k一1 气)气一‘ 一飞Zk 关于△。(x)的值有一假设:对所有k)2, k一l 气=.万万~但是还不能证实,即使解决了I血日日既假设(L幽众必fh男沁th岛is):对于任意。>O,a>l/2,有 心(口+it)<<}tl‘,也无法予以证明. 除数问题的进一步推广如下([4]):当x)1时,关于整数k)2,m)1一致地有 上又::闻L函数理论的解析方法进行研究,在数论的大t问题中(!7】)非常重要.在最简单的情形(橄二l)下得到的渐近表示式有: 当介=2,对于d‘xZ/,皿【51); 当k=4,对于d簇x’/2(见[6】): 当k)4,对于d(xZ/k/in‘x(见[8]).对任意。)l和k二2,已求得(【9】)增长的真正的阶(、)当d簇x,一“,o<:0是任意数. 特别地,最后的不等式表明,对于任意整数k)2,m)1,和砚词(炭d,l)与具有公差d‘xl‘2一‘的全部本原算术级数在“平均”意义上有相同的增长的主要项.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条