1) volume source wavelet
胀性震源子波
1.
To separate the direct path wave of volume array source into point volume source wavelet and then to separate the point volume source wavelet into compresion wavelet and tension wavelet under deeper water conditions.
从现有胀性震源阵列在较深水条件下的直达波中分离出点状胀缩震源子波和胀性震源子波,然后用胀性震源子波按激发接收环境的作用合成反射子波。
2) volume and tension wavelet
胀缩震源子波
3) source wavelet
震源子波
1.
Authors suggest that different source wavelets of different charges may be taken respectively to meet actual condition in seismic exploration, and to have simple factors for good comparison.
本文首先较系统地从理论上讨论了在高分辨率地震勘探中如何选取最佳药量及炸药耦合的问题 ;然后通过实际试验得出 ,在高分辨率勘探中应采用较大药量的激发方式以及为了改善炸药耦合条件应采用小井孔、闷井的措施 ;同时建议采用接收不同药量震源子波的方法 ,使其更接近地震勘探的实际情况 ,并使因素更为单一 ,更具可对比性。
4) dynamite source wavelet
炸药震源子波
5) P-wave source
纵波震源
1.
Conventional land vertical seismic profiling (VSP) exploration usually uses P-wave sources and three-component geophones for receivers, emphasizing P- and converted S-waves.
常规陆上VSP(Vertical Seismic Profiling)勘探普遍采用纵波震源激发,三分量检波器接收,主要利用的是纵波和转换横波信息。
6) source wavefields
震源波场
1.
It can improve the image quality of the targets by controlling the directional characteristics of incident source wavefields at the targets.
控制照明偏移是面向地质目标的快速偏移技术 ,它可通过控制目的层处震源波场的方向特性 ,改善目标区域的成像质量。
补充资料:波波夫超稳定性
系统输入输出乘积的积分值受限制的条件下的稳定性,1964年罗马尼亚学者V.M.波波夫所提出。对于所研究的系统,如果用u(t)表示输入向量,y(t)表示输出向量,那么在给定正的常数L后,系统输入输出乘积积分值的限制关系可表示为:
式中uT(t)是u(t)的转置向量。如果对于这种限制总能找到相应的正的常数K和δ,使系统状态方程解的一切形式在时间区间0≤t≤t1内都满足条件‖x(t)‖≤K[‖x(0)‖+δ],这种系统便被称为超稳定的。其中x(0)是系统的初始状态,‖x(t)‖是状态向量x(t)的范数。如果t→∞时,还有x(t)→0,则称系统是超渐近稳定的。超稳定性理论适用于一切类型的控制系统,包括线性系统和非线性系统、定常系统和时变系统。超稳定理论的一个重要应用领域是模型参考适应控制系统。
对于线性定常系统,系统的超稳定性与其传递函数矩阵的正实性之间有着密切关系。澳大利亚学者B.D.O.安德森在1968年证明,系统的超稳定性等价于系统传递函数矩阵的正实性,系统的超渐近稳定性等价于系统传递函数矩阵的严格正实性。正实性和严格正实性是现代网络理论中的两个重要概念。一个传递函数矩阵G(s)为正实的条件是:①,其中宑是s的共轭复数变量,是G(s)的共轭复数矩阵;②G(s)在复变量s的右半开平面上解析,且在虚轴上仅有简单的极点,而对应这些极点的留数矩阵为正定埃尔米特矩阵;③G(s)+GT(s)在s的右半开平面为半正定埃尔米特矩阵,其中GT(s)为G(s) 的转置矩阵。在正实性的条件中,把条件②改为G(s)在包括虚轴在内的右半闭s平面上解析,把条件③改成为G(s)+GT(s)在右半闭 s平面上是正定埃尔米特矩阵,则相应地称传递函数矩阵是严格正实的。
参考书目
V.M.Popov, Hyperstability of Automatic Control Systems, Springer-Verlag, New York, Berlin,1973.
式中uT(t)是u(t)的转置向量。如果对于这种限制总能找到相应的正的常数K和δ,使系统状态方程解的一切形式在时间区间0≤t≤t1内都满足条件‖x(t)‖≤K[‖x(0)‖+δ],这种系统便被称为超稳定的。其中x(0)是系统的初始状态,‖x(t)‖是状态向量x(t)的范数。如果t→∞时,还有x(t)→0,则称系统是超渐近稳定的。超稳定性理论适用于一切类型的控制系统,包括线性系统和非线性系统、定常系统和时变系统。超稳定理论的一个重要应用领域是模型参考适应控制系统。
对于线性定常系统,系统的超稳定性与其传递函数矩阵的正实性之间有着密切关系。澳大利亚学者B.D.O.安德森在1968年证明,系统的超稳定性等价于系统传递函数矩阵的正实性,系统的超渐近稳定性等价于系统传递函数矩阵的严格正实性。正实性和严格正实性是现代网络理论中的两个重要概念。一个传递函数矩阵G(s)为正实的条件是:①,其中宑是s的共轭复数变量,是G(s)的共轭复数矩阵;②G(s)在复变量s的右半开平面上解析,且在虚轴上仅有简单的极点,而对应这些极点的留数矩阵为正定埃尔米特矩阵;③G(s)+GT(s)在s的右半开平面为半正定埃尔米特矩阵,其中GT(s)为G(s) 的转置矩阵。在正实性的条件中,把条件②改为G(s)在包括虚轴在内的右半闭s平面上解析,把条件③改成为G(s)+GT(s)在右半闭 s平面上是正定埃尔米特矩阵,则相应地称传递函数矩阵是严格正实的。
参考书目
V.M.Popov, Hyperstability of Automatic Control Systems, Springer-Verlag, New York, Berlin,1973.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条