1) Bipartite G-design
偶图G-设计
2) Dissociable Bipartite G-design
可分解的偶图G-设计
3) G design
G设计
4) G-design
G-设计
1.
A G-design (G-packing design) of KV , denoted by G-GD(v) ( G-PD(v)) is a pair (X, B) where B is a collection of subgraph of Kv, called blocks, such that each block is isomorphic to G and any two distinct vertices in Kv are jointed in exactly (at most) A blocks of B.
一个G-设计(C-填充),记作(v,G,λ)-CD((v,G,λ)-PD),是指一个序偶(X,B)其中X为K_v的顶点集,B为K_v中同构于G的子图的集合,称为区组集,使得K_v中每条边恰好(至多)出现在B的λ个区组中。
2.
A G-design(G-packing design,G-covering design)ofλK_v,denoted by(v,G,λ)-GD((v,G,λ)- PD,(v,G,λ)-CD),is a pair(X,B)where X is the vertex set of K_v and B is a collection of subgraphs of K_v,called blocks,such that each block is isomorphic to G and any two distinct vertices in K_v are joined in exactly(at most,at least)λblocks of B.
λK_v为λ重v点完全图,G为有限简单图,λK_v的一个G-设计(G-填充设计,G-覆盖设计),记为(v,G,λ)-GD((v,G,λ)-PD,(v,G,λ)-CD),是指一个序偶(X,B),其中X为K_v的顶点集,B为K_v中同构于G的子图的集合,称为区组集,使得K_v中每条边恰好(至多,至少)出现在B的λ个区组中。
5) G-packing design
G-填充设计
1.
A G-design(G-packing design,G-covering design)ofλK_v,denoted by(v,G,λ)-GD((v,G,λ)- PD,(v,G,λ)-CD),is a pair(X,B)where X is the vertex set of K_v and B is a collection of subgraphs of K_v,called blocks,such that each block is isomorphic to G and any two distinct vertices in K_v are joined in exactly(at most,at least)λblocks of B.
λK_v为λ重v点完全图,G为有限简单图,λK_v的一个G-设计(G-填充设计,G-覆盖设计),记为(v,G,λ)-GD((v,G,λ)-PD,(v,G,λ)-CD),是指一个序偶(X,B),其中X为K_v的顶点集,B为K_v中同构于G的子图的集合,称为区组集,使得K_v中每条边恰好(至多,至少)出现在B的λ个区组中。
6) G-covering design
G-覆盖设计
1.
A G-design(G-packing design,G-covering design)ofλK_v,denoted by(v,G,λ)-GD((v,G,λ)- PD,(v,G,λ)-CD),is a pair(X,B)where X is the vertex set of K_v and B is a collection of subgraphs of K_v,called blocks,such that each block is isomorphic to G and any two distinct vertices in K_v are joined in exactly(at most,at least)λblocks of B.
λK_v为λ重v点完全图,G为有限简单图,λK_v的一个G-设计(G-填充设计,G-覆盖设计),记为(v,G,λ)-GD((v,G,λ)-PD,(v,G,λ)-CD),是指一个序偶(X,B),其中X为K_v的顶点集,B为K_v中同构于G的子图的集合,称为区组集,使得K_v中每条边恰好(至多,至少)出现在B的λ个区组中。
补充资料:图的减缩图(或称图子式)
图的减缩图(或称图子式)
minor of a graph
图的减缩图(或称图子式)【.皿以ofa脚户;MHHoPrpa中a」【补注】设G是一个图(graph)(可以有环及多重边).G的一个减缩图(nullor)是从G中接连进行下述运算而得的任何一个图: i)删去一条边; 五)收缩一条边; 说)去掉一个孤立顶点. NRobe由on与P.D.Se脚aour的图减缩定理(脚Ph nl的。r theon习11)如下所述:已知有限图的无穷序列G,,GZ,…,则存在指标i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条