1) Disturbance force source
扰动力源
2) disturbance source
扰动源
1.
Using sampled voltage and current waveforms,a new method of locations for disturbance sources is found based on multiresolution analysis of wavelet.
为经济合理地精确定位电能质量扰动,根据监测点的电压电流波形,基于小波多分辨率,提出了一种扰动源定位新方法。
2.
This paper provides a new method for fast qualitatively detecting the disturbance sources, which is based on their statistical instantaneous characteristics.
提出一种基于检测点产生的瞬时负荷统计特性快速确认扰动源的方法,展示了该原理在谐波、电压凹陷、电压膨胀、瞬间电压降落四种扰动,在MATLAB下的仿真和计算结果。
3) Disturbing source region
扰动源区
4) Disturb source vortex
扰动源涡
1.
In summer, the distribution of rain belt over East was controlled by the last winter position of Disturb source vortex over West China, during 85°E to 105°E latitude.
我国西部 (85°10 5°E)冬季“扰动源涡”的位置对夏季东部雨带的配置具有支配作用。
5) dynamic disturbance
动力扰动
1.
Mechanism analysis on failure of deep rock laneway under dynamic disturbance;
深部岩巷在动力扰动下的破坏机理分析
2.
The dynamic disturbance may trigger the instable failure of rock mass when the high elastic strain energy is accumulated in the deep underground rock mass;and in turn it leads to occurrence of rockbursts.
处于深部的岩体内部积累了大量的弹性应变能,在外部动力扰动下这些能量以非常猛烈的方式释放,从而导致岩爆的发生。
3.
By using an explicit finite difference program FLAC3D,a model of numerical calculation is established for a deep mining pillar with dynamic disturbance under high stress.
对深部矿柱在承受高静载应力时的动力扰动力学模型进行应力波传播力学响应分析,采用FLAC3D有限差分程序对深部开采圆形矿柱进行高应力下动力扰动数值计算。
6) Hydraulic Disturbance
水力扰动
1.
Absorption Oscillation or Cause Resonance——Simulation Research on Effect of Air Tank to Hydraulic Disturbance System;
吸收振动抑或引发共振——空气罐在水力扰动系统中作用的模拟研究
补充资料:扰动力函数
分子式:
CAS号:
性质:化学反应体系的宏观约束条件一定,则化学平衡就一定,改变条件则平衡就要移动,即平衡受到扰动。对一化学反应,可选择任一测量时刻的平衡浓度作为与时间无关的参考浓度CB,0,由于扰动,平衡位移,定义浓度偏移为△B=CB-CB,0,平衡浓度偏移为△B,e=CB,e-CB,0。对反应的任一组分浓度偏移均可统一为反应偏移,即△=△B/vB,△e=△B,e/vB。于是,根据化学弛豫原理可将高级数的化学速率方程转变为一级反应动力学行为,即-d△/dt=(△-△e)/ι,式中△即为扰动力函数。
CAS号:
性质:化学反应体系的宏观约束条件一定,则化学平衡就一定,改变条件则平衡就要移动,即平衡受到扰动。对一化学反应,可选择任一测量时刻的平衡浓度作为与时间无关的参考浓度CB,0,由于扰动,平衡位移,定义浓度偏移为△B=CB-CB,0,平衡浓度偏移为△B,e=CB,e-CB,0。对反应的任一组分浓度偏移均可统一为反应偏移,即△=△B/vB,△e=△B,e/vB。于是,根据化学弛豫原理可将高级数的化学速率方程转变为一级反应动力学行为,即-d△/dt=(△-△e)/ι,式中△即为扰动力函数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条