说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多组态波函数
1)  multiconfiguraction state wave function
多组态波函数
2)  configuration wave functions
组态波函数
3)  Configuration state function
组态态函数
4)  Stationary wave functions
定态波函数
5)  ground state wave function
基态波函数
1.
Solution of the ground state wave function of Bose-condensed gas in a harmonic trap based on the Gross-Pitaevskii function;
基于Gross-Pitaevskii能量泛函求解谐振势阱中玻色凝聚气体基态波函数
6)  final state wavefunction
末态波函数
补充资料:小波函数

小波分析

小波分析(wavelet analysis), 或小波变换、小波转换(wavelet transform)是指用有限长或快速衰减的、 ??为母小波(mother wavelet)的震荡波形来表示信号。该波彠被 缩放 和 平移 以匹配输入的信号。 小波一词由 jean morlet 和 alex grossman 在 1980年代 早期建立。他们用的是 法语 词ondelette - 意思就是"小波"。在英语里,后来将"o de"变为"wave"而成了wavelet。 小波变换删成两个大类: 离散小波变换 (dwt) 和 连续小波变换 (cwt)。两者的主要区别在于,连续变捠在所有可能的缩放和平移上操作,而禠散变换采用所有缩放和平移值的特定孠集。 小波理论和几个其他课题相关。 ??有小波变换可以视为 时域频域表示 的形式,所以和 调和分析 相关。所有实际有用的离散小波变换䠿用包含 有限脉冲响应 滤波器的滤波器段(filterbank)。构成cwt砄小波受 海森堡 的 测不准原理 制约,或者说,离散小波基可以在 测不准原理 的其他形式的上下文中考虑。

母小波

简单来说(技术上有错),母小波函数\psi\ (t)必须满足下列条件: :\int_^ |\psi (t)|\ ^2\, dt = 1, 也即 \psi\in l^2(\r) 并单位化 :\int_^ |\psi\ (t)|\, dt <\infty, 也即 \psi\in l^1(\r) :\int_^ \psi\ (t)\, dt = 0 多数情况下,需要要求\psi连续且有一个矩为0的大整数m,也即寠所有整数m\int_^ t^m\,\psi\ (t)\, dt = 0 这表示母小波必须非0且均值为0。技 ??上来讲,母小波必须满足可采纳性条 ??以使某个分辨率的恒等成立。 母小栢的一些例子: 母小波缩放(或称膨胀)a倍并平移b得到(根据morlet的原始形式): :\psi _ (t) = \psi \left( \right) 这些函数常常被错误的称为变换的埠函数。实际上,没有基函数存在。时埠频域解释要用一个稍有区别的表述(由d lprat给出)。

和傅立叶变换比较

小波变换经常和 傅立叶变换 做比较,在那里信号用正弦函数的和栥表示。主要的区别是小波在时域和频堟都是局部的而标准的 傅立叶变换 只在 频域 上是局部的。 短时间傅立叶变换 (short-time fourier transform)(stft)也是时域和频域都局部化 ??但有些频率和时间的分辨率问题,而 ??波通常通过 多分辨率分析 给出信号更好的表示。 小波变换计箠复杂度 上也更小,只需要o(n)时间,而不是 快速傅立叶变换 的 o(n log n),n代表数据大小。

小波的定义

有几种定义小波(或者小波族)的方法

缩放滤波器

小波完全通过缩放滤波器g - 一个低通 有限脉冲响应 (fir)长度为2n和为1的滤波器 - 来定义。在双正交小波的情况,分解堌重建的滤波器分别定义。 高通滤波哒的分析作为低通的qmf来计算,而重建滠波器为分解的时间反转。 例如daubechie 和symlet小波。

缩放函数

小波有时域中的小波函数\psi (t) (即母小波)和缩放函数\phi (t) (也称为父小波)来定义。 小波函数实 ??上是带通滤波器,每一级缩放将带宽 ??半。这产生了一个问题,如果要覆盖 ??个谱需要无穷多的级。缩放函数滤掉 ??换的最低级并保证整个谱被覆盖到。 ??细解释请参看[[1]] s/wavelets.html#note7。 对于有紧支撑的小波,\phi (t)可以视为有限长,并等价于缩放滤波堨g. 例如meyer小波

小波函数

小波只有时域表示,作为小波函数\psi (t). 例如墨西哥帽小波。

应用

通常来讲,dwt用于 信号编码 而cwt用于 信号分析 。所以,dwt通常用于工程和计算机科堦而cwt经常用于科学研究。小波变换现堨被大量不同的应用领域所采纳,经常堖代了 傅立叶变换 的位置。很多物理学的领域经历了这䠪范式的转变,包括 分子动力学 , 重新计算 (ab initio calculations), 天文物理学 , 密度矩阵 局部化,地震地质物理学, 光学 , 湍流 ,和 量子力学 。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条