1)  metapositive (semi)definite matrix
亚(半)正定矩阵
1.
In this paper, metapositive (semi)definite matrix over Ω is defined, the necessary and sufficient conditions for the existence of and the explicit expressions for (skew-) self-coniugate solutions, metapositive (semi) definite solutions of the matrix equation AXA= B over F or Ω are derived.
本文定义了Ω上的亚(半)正定矩阵,给出了矩阵方程AXA*=B在F上有(斜)自共轭矩阵解及在Ω上有亚(半)正定矩阵解的充要条件及其解集的显式表示。
2)  semipositive subdefinite matrix
亚半正定矩阵
3)  complex metapositive semidefinite matrix
复亚半正定矩阵
1.
The concept of complex metapositive semidefinite matrix is given, its properties and determinant theories are discussed, and then the Schur theorem, Hua Luo-geng theorem, Minkowski inequality, Protruding property inequality and Ostrowski-Taussky inequality of Hermite matrices are generalized to more extensive compound matrix genus.
给出了复亚半正定矩阵的概念,研究了它的基本性质及行列式理论,将Hermite阵的Schur定理华罗庚定理Minkowski不等式凸性不等式Ostrowski-Taussky不等式推广到了较广泛的复矩阵类,扩大了Minkowski不等式的指数范围,削弱了华罗庚不等式的条件。
4)  skewpositiove semidefinite matrix
斜亚半正定矩阵
5)  minor positive (semi)definite matrix
次亚(半)正定矩阵
6)  part semipositive subdefinite matrix
部分对称亚半正定矩阵
参考词条
补充资料:正定矩阵

设m是n阶实系数对称矩阵, 如果对任何非零向量

x=(x_1,...x_n) 都有 xmx^t>0,就称m正定。

正定矩阵在相似变换下可化为标准型, 即单位矩阵。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。