说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 孙子算经
1)  Sun Zi Suan Jing
孙子算经
2)  Grand-son
孙子、外孙
3)  Sunzi
孙子
1.
Enlightenment of Sunzi Thought of Management on Modern Education;
孙子管理思想对现代教育的启示
4)  Sun Zi
孙子
1.
On Sun Zi s Important Position in the History of Chinese Philosophy;
论孙子在中国哲学史上的重要地位
2.
Origin of the Contemporary Sande Technique and Tactics from the Thought of SUN Zi Strategies;
孙子军事战略思想与散打应战谋略之研究
5)  Sun Tzu
孙子
1.
Striving for the Tianxia by the Whole——Analysis of Sun Tzu s Thought of Making the Country Powerfully;
以全争于天下——试析孙子的强国思想
2.
Sun Tzu and Mao Zedong s Military Reflection on Water;
孙子与毛泽东关于“水”的战争思考
3.
Sun Tzu s Benevolent Thinking and the Employment of Military Law;
孙子“仁”的思想与战争法的运用
6)  grandson [英]['ɡrænsʌn]  [美]['græn'sʌn]
孙子
1.
The dialect appellation words "children of grandson" and "grandchildren of grandson" have comparably complex usage,there existing the multi-dimensional interlacement.
“孙子的子女”及“孙子的孙子女”这两个称谓的方言用词比较复杂,存在着多层次交叉的现象。
补充资料:海岛算经

算经十书之一。三国魏景元四年(公元263年)刘徽撰,本为《九章算术注》之第十卷,题为《重差》。后来此卷单行。因第一题是测量海岛的高和远而得名。所有问题都是利用两次或多次测望所得的数据,来推算可望而不可及的目标的高、深、广、远。 全书共9题:

(1)今有望海岛,立两表齐,高三丈,前後相去千步,令後表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从後表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高及去表各几何?答曰:岛高四里五十五步;去表一百二里一百五十步。

术曰:以表高乘表间为实;相多为法,除之。所得加表高,即得岛高。求前表去岛远近者:以前表却行乘表间为实;相多为法。除之,得岛去表数。

(2)今有望松生山上,不知高下。立两表齐,高二丈,前後相去五十步,令後表与前表参相直。从前表却行七步四尺,薄地遥望松末,与表端参合。又望松本,入表二尺八寸。复从後表却行八步五尺,薄地遥望松末,亦与表端参合。问松高及山去表各几何?答曰:松高一十二丈二尺八寸;山去表一里二十八步、七分步之四。

术曰:以入表乘表间为实。相多为法,除之。加入表,即得松高。求表去山远近者:置表间,以前表却行乘之为实。相多为法,除之,得山去表。

(3)今有南望方邑,不知大小。立两表东、西去六丈,齐人目,以索连之。令东表与邑 东南隅及东北隅参相直。当东表之北却行五步,遥望邑西北隅,入索东端二丈二尺六寸半。又却北行去表一十三步二尺,遥望邑西北隅,适与西表相参合。问邑方及邑去表各几何?答曰:邑方三里四十三步、四分步之三;邑去表四里四十五步。

术曰:以入索乘後去表,以两表相去除之,所得为景长;以前去表减之,不尽以为法。置後去表,以前去表减之,余以乘入索为实。实如法而一,得邑方。求去表远近者:置後去表,以景长减之,余以乘前去表为实。实如法而一,得邑去表。

(4)今有望深谷,偃矩岸上,令勾高六尺。从勺端望谷底,入下股九尺一寸。又设重矩于上,其矩间相去三丈。更从勺端望谷底,入上股八尺五寸。问谷深几何?答曰:四十一丈九尺。

术曰:置矩间,以上股乘之,为实。上、下股相减,余为法,除之。所得以勾高减之,即得谷深。

(5)今有登山望楼,楼在平地。偃矩山上,令勾高六尺。从勾端斜望楼足,入下股一丈二尺。又设重矩於上,令其间相去三丈。更从勾端斜望楼足,入上股一丈一尺四寸。又立小表於入股之会,复从勾端斜望楼岑端,入小表八寸。问楼高几何?答曰:八丈。

术曰:上、下股相减,余为法;置矩间,以下股乘之,如勾高而一。所得,以入小表乘之,为实。实如法而,即是楼高。

(6)今有东南望波口,立两表南、北相去九丈,以索薄地连之。当北表之西却行去表六丈,薄地遥望波口南岸,入索北端四丈二寸。以望北岸,入前所望表里一丈二尺。又却行,後去表一十三丈五尺。薄地遥望波口南岸,与南表参合。问波口广几何?答曰:一里二百步。

术曰:以後去表乘入索,如表相去而一。所得,以前去表减之,余以为法;复以前去表减後去表,余以乘入所望表里为实,实如法而一,得波口广。

(7)今有望清渊下有白石。偃矩岸上,令勾高三尺。斜望水岸,入下股四尺五寸。望白石,入下股二尺四寸。又设重矩於上,其间相去四尺。更从勾端斜望水岸,入上股四尺。以望白石,入上股二尺二寸。问水深几何?答曰:一丈二尺。

术曰:置望水上、下股相减,余以乘望石上股为上率。又以望石上、下股相减,余以乘望水上股为下率。两率相减,余以乘矩间为实;以二差相乘为法。实如法而一,得水深。

(8)今有登山望津,津在山南。偃矩山上,令勾高一丈二尺。从勾端斜望津南岸,入下股二丈三尺一寸。又望津北岸,入前望股里一丈八寸。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条