1) Cartsian closedness
Cartesian封闭性
2) cartesian closed
cartesian闭
1.
In this paper we obtain that the category of consistent L-domains and Scott continuous functions is cartesian closed.
考察相容L-domain范畴,得出了以Scott连续映射为态射的相容L-domain范畴是cartesian闭范畴的结论。
3) Cartesian closed category
Cartesian闭范畴
4) sealing ability
封闭性
1.
Xiaolinke-Aogula fault spans Qijia-Gulong depression and the west slope,and its sealing ability and evolution history play very important roles in determining whether the oil and gas generated and expelled from Qijia-Gulong depression can migrate to and accumulate in the west slope.
小林克—敖古拉断裂横亘在齐家—古龙凹陷与西部斜坡之间,齐古凹陷烃源岩生排出的油气能否向西部斜坡运移并聚集,该断裂的封闭性及其演化史起着非常重要的作用。
2.
The barrier sealing ability is relative jeven the high displacement pressure barrier only stops free hydrocarbon at a certain level,without obstruction to diffuse hydrocarbon and water solution hydrocarbon.
综合考虑这些因素,建立相应的数学模型,计算出单位时间内通过盖层单位面积的流体量,以其倒数定义为盖层对流体的封闭指数,用封闭指数对盖层的封闭性进行定量评价。
5) sealing
[英]['si:liŋ] [美]['silɪŋ]
封闭性
1.
Fault physical modeling experiment and its application in the assessment of fault sealing of Xinzhuang oilfield,Henan,China;
断层物理模拟实验及其在河南新庄油田断层封闭性评价中的应用
2.
Evaluation method of grey relationship analysis of fault sealing;
利用灰色关联分析法评判断层的封闭性
3.
Study on the Capacity of Lateral Sealing of Faults in the Luliang Uplift of Junggar Basin;
准噶尔盆地陆梁隆起断层侧向封闭性研究
6) seal
[英][si:l] [美][sil]
封闭性
1.
Division of seal evolution stages of shale caprocks to gas in each phase and its research significance;
泥岩盖层对各种相态天然气封闭性演化阶段划分及意义
2.
Based on the analysis of formation and evolution of overpressure,the evolution law for sealing of overpressured mudstone caprock was quantitatively studied by the quantitative study of evolution law of overpressure.
为了研究超压泥岩盖层封闭性演化规律,在超压形成与演化分析的基础上,通过超压演化规律的定量研究,对超压泥岩盖层封闭性演化规律进行了定量研究,结果表明超压泥岩盖层封闭性演化是按阶段进行的,每一次超压释放表明上一次封闭性演化阶段的结束,下一次封闭性演化阶段的开始,每一次演化过程中封闭性逐渐增强,在超压释放期封闭性降至最低点。
3.
When people studied sealing properties of a fault in the past, it was only qualitatively said that the fault is“sealing”or“nonsealing”.
人们对某一断层作封闭性研究时,只是给予“封闭”与“不封闭”的定性判断。
补充资料:封闭性
在数学里,给定一个非空集合 <math>S</math> 和一个函数 <math>F: S \times S \rightarrow S</math> ,则称 <math>F</math> 为在 <math>S</math> 上之二元运算(binary operation),或称 <math>(S,F)</math> 具有封闭性(closure)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条