1) Poodact set-valued measurc
乘积集值测度
2) Product of Fuzzy-Valued Measure
乘积模糊值测度
3) product measure
乘积测度
1.
Representation of product measure and measurability of measures of sections of sets;
乘积测度的表示与集的截口的测度的可测性
4) Set-valued measure integration
集值测度积分
5) Set-valued measure
集值测度
1.
Some basic properties of the set-valued measure and the defination of setvalued measure integration are given,also we discuss the convergence of set-valued measures integration.
给出集值测度的一些基本性质和集值测度积分的定义,进而确定集值测度积分的收敛性。
2.
The equiualent conditions for a bounded closed convex set-valued mapping to be a perfet additive Set-valued measure are given.
给出了有界闭凸集值映射是完全可加的集值测度的等价条件。
6) set valued measure
集值测度
1.
The notion of integrals scalar valued functions with respect to a set valued measure is introduced.
讨论了数值函数关于集值测度的积分,证明了数值函数关于有界变差弱紧凸集值测度的积分是弱紧凸的,同时建立了集值Lebesgue Stieltjes积分和集值随机Lebesgue Stieltjes积分理论。
2.
In this paper, first, we study the set valued measures generated by set valued increasing functions A(t), t∈R+, on product measurable space,β(R+).
本文首先研究集值增函数在β(R+)上产生的集值测度,然后在其基础上研究集值增过程A(ω,t),(ω,t)∈Ω×R+,在乘积可测空间F×β(R+)上产生的集值测度,在一定条件下建立了两者之间的一一对应关系。
3.
On the basis of the definitions about the integrals of real measurable functions about set valued measures,the Radon Nikodym theorem of set valued measures is discussed by means of the support functions on the set valued measures,and the Radon Nikodym theorem of the classical measures is extended.
在一般实值可测函数关于集值测度积分的基础上 ,利用集值测度的支撑函数 ,讨论了集值测度的拉东尼古丁定理 ,将经典的拉东尼古丁定理做了推广 ,特别是得到了一维集值测度的拉东尼古丁定
补充资料:测度μ的支集
测度μ的支集
support of a measure
测度召的支集[劝“犯rt ofameasure召;。oc“Te月‘Me-P。,不之】 集合S(召)=G\G.)(拼),其中G是局部紧Hau-sdroff空间,拼是此空问上给定的正则BOrel测度,G。(召)是使拜(Gt,)=0的最大开集.换句话说,S(拜)是拜被支撑的最小闭集.(这里,如果拜(G\E)二O,那么召支于E.)若S(拜)是紧集,则称#是具有紧支集(eompacts叩Port)的. M.H.Bo认uexoBeKH盛撰【补注】对拓扑空间G上的测度召,当所有#零开子集的并集仍为零测集时,是可以定义召的支集的.在G有可数基,或拜是胎紧的或“是Radon测度(见正则测度(regular measure))时正是这种情形.但若G仅为局部紧以及群不是胎紧的,则就不总是如此了. 当然,对于带拓扑T的拓扑空间G上的测度拜,总是可以定义 S(尸)一G\日{V:V〔T且#(V)=0},但此时不一定有“(G\S(召))二O,而有违于支集的直觉.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条