1) contemporaneous variation
等时变分
1.
This paper discusses the mechanical properties of noncontemporaneous variation,from which the Hamilton principle and the principle of least action are derived.
本文讨论了非等时变分的力学性质,并由此导出Hamilton原理和最小作用量原理。
2) asynchronous variation
非等时变分
1.
To give the integral invariants of Birkhoff system, including the Poincaré Cartan integral invariant and the Poincaré linear integral invariant, the formula of the asynchronous variation of Pfaffian action and the Birkhoff equations were used.
利用 Pfaff作用量的非等时变分公式和 Birkhoff方程来求这些积分不变量 。
2.
The Poincaré cartan integral invariant and the Poincaré linear integral invariant of the Poincaré Chetaev system are obtained by using the formula of the asynchronous variation of Hamilton action and the Poincaré Chetaev equations.
研究Poincaré-Chetaev系统的积分不变量 ,包括Poincaré- Cartan积分不变量以及Poincaré线性积分不变量 利用Hamilton作用量的非等时变分和Poincaré-Chetaev方程来求这些积分不变量 ,得到系统的Poincaré线性积分不变量和Poincaré-Cartan积分不变量 ,并举例说明结果的应
3) noqsimultaneous variational eqution
等时变分方程
4) nonsimultaneous variational equation
非等时变分方程
1.
This paper presents the nonsimultaneous variational equations of relative motion for nonholonomic systems,and studies the solutions of the equations.
首先给出非完整相对运动动力学系统的非等时变分方程,然后研究它们的解,并证明在一定条件下可利用第一积分来得到非等时变分方程的特解。
5) time-dependent variational inequalities
依赖时间的变分不等式
1.
By means of time-dependent variational inequalities, the existence of equilibrium solutions are studied.
利用依赖时间的变分不等式研究了市场均衡解的存在性。
6) Equivariant bifurcation
等变分岔
补充资料:分位等流
【分位等流】
谓眼等诸识,各随自类转变。如眼识乃至身识,皆从第八种子识而生;对于色等诸尘,名等流果。若第六识从种子识而生起诸分别,亦名等流果。而识与尘分位各同,故名分位等流。(种子识即藏识也。等流果者,谓眼识与色尘乃至身识与触尘各为等流,而识与尘皆名果也。第六识即意识也。)
谓眼等诸识,各随自类转变。如眼识乃至身识,皆从第八种子识而生;对于色等诸尘,名等流果。若第六识从种子识而生起诸分别,亦名等流果。而识与尘分位各同,故名分位等流。(种子识即藏识也。等流果者,谓眼识与色尘乃至身识与触尘各为等流,而识与尘皆名果也。第六识即意识也。)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条