1) isotropic basis
迷向基
2) isotropic
[英][,aisə'trɔpik] [美][,aɪsə'trɑpɪk]
迷向
1.
This paper discusses the relations between a 2-harmonic submanifold and aminimal submanifold with isotropic second fundmental form in Sn+p and obtains thepinching conditions on the second fundmental form and the Ricci curvature for compact 2-harmonic submanifolds in Sn+p.
研究了n+P维单位球面中具有迷向第一基本形式的n维2-调和子流形与极小子流形之间的关系,获得了关于第二基本形式与Ricci曲率的拼挤条件。
2.
In this paper,we prove that two types of isotropic totally real submanifolds with flat normal bundle in a complex projective space must be minimal.
证明了复射影空间中两种类型法丛平坦的全实迷向子流形必是极小的,并在紧致的情形确定了它们的具体形状。
3) mating disruption
迷向
1.
Sex pheromone-mediated monitoring and mating disruption of C.
在国际上,利用性信息素监测和迷向防治苹果蠹蛾已经成为一种切实可行并广泛应用的害虫管理技术。
4) isotopic second fundamental form
迷向第二基本形式
1.
We also obtain a sufficient condition to assure that a Kaehler submanifold MnCPn+P with isotopic second fundamental form is totally geodesic.
本文给出了CP4(1)中紧可定向、共形平坦、具非负欧拉示性数的Kaehler曲面数量曲率的一个估计,得到了有迷向第二基本形式的Kaemer子流形MnCPn+P是全测地一个充分条
5) isotropic vector
迷向向量
1.
The paper showed a parameter representation of isotropic vector in complex vector space, and obtained the some properties.
给出了复向量空间中的迷向向量的一种参数表示,并由此获得了迷向向量的一些性质。
6) mating disruption
迷向法
1.
Field experiments for controling the tea tussock moth,Euproctis pseudoconspersa,by mating disruption with sex pheromone.;
应用性信息素迷向法防治茶毛虫的田间试验
2.
Control effect on diamondback moth,Plutella xylostella,with sex pheromone by mating disruption in cabbage field at high mountain;
性诱剂迷向法防治高山甘蓝田小菜蛾研究
3.
Using Sex pheromones control pests are effective methods in nuisance less agriculture production, The experiment of Mating disruption of confuser-A introduced from Japan control apple major pests include Carposina niponesis, Phyllonorycter ringonella heparana and Adoxophyes orana fasciata, in one year or two years.
利用性信息素控制害虫是无公害农业生产者的一种方法,引进日本产复合搅乱剂-A的迷向法控制苹果桃小食心虫、金纹细蛾、卷叶蛾等几种主要害虫试验,无论是连续二年还是当年的处理,其危害率都较对照降低40%~90%,且复合性信息素一次处理,简便易行。
补充资料:非迷向核
非迷向核
anisotropic kernel
非迷向核!咖即肋叩ic缺mel;a。“3oTpon。,,压pc门 定义在域k上的半单代数群(a辱braic group)G的子群D,它是极大k分裂环面SCG的中心化子的换位子群,即D=「Z。(S),Z。(S)〕.非迷向核D是定义在k上的半单非迷向群(anisotropic梦oup);ranko=以nkG一ran城G.非迷向核的概念在研究G的人结构中起重要作用“11).设D=G,即ran从G二O,则G在k上是非迷向的;如果D=(e),则群G称为在k上是拟分裂的(quasi一split).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条