1) Number of parts of partition
分部数
1.
In this paper,the authors gave a recurrent formula of perfect partition number in the restriction of the part of partition and number of parts of partition.
在分部数和分部量有限制的情况下给出了正整数n的完备分拆数的两个递推公式,同时也讨论了完备分拆生成函数的一些结果。
2) integral part
整数部分
1.
Some equalities concerning the integral parts of square roots;
关于平方根整数部分的几个等式
2.
It has been proven by elementary methods that: for any positive integer n,the equation n!/x0!+n!/x1! +n!/x2!+…+n!/xn!= [e·n!] has only a positive integer solution(x0,x1,x2,…,xn) =(1,1,2,…,n) suitable to x0≤x1≤x2≤…≤xn,while [e·n!] is the integral part of e·n!.
运用初等方法证明了:对于任何正整数n,方程n!/x0!+n!/x1!+n!/x2!+…+n!/xn!=[e·n!]仅有一组正整数解(x0,x1,x2,…,xn)=(1,1,2,…,n)适合x0≤x1≤x2≤…≤xn,其中[e·n!]是e·n!的整数部分。
3.
For any real number a,let [a] denote the integral part of a.
对于实数α,设[α]是α的整数部分,本文运用初等方法证明了;方程[logx(x-1)+logx-1(x+1)+logx+1(2x)]=x仅有正数解x=4。
补充资料:数不胜数
1.数也数不清。形容很多。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条