1) Isentropic trajectory
等熵轨迹
2) Contour Tool Path
等高线轨迹
3) streamer track
等浮电缆轨迹
4) tautochron
等时降落轨迹
5) constant velocity motion curve
等速运动轨迹
6) track
[英][træk] [美][træk]
轨迹
1.
Research on Abrasive's Track of Mirror Fhishing;
镜面光整加工中磨料轨迹的分析研究
2.
A study on the dynamic tracks of comuunicable diseases in Yichun from 1950 through 2005;
1950~2005年宜春市传染病动态演变轨迹研讨
3.
Research of workpiece s movement track and interference;
工件的运动轨迹和干涉问题研究
补充资料:等熵流动
流体系统每一部分的熵在运动过程中都保持不变的一种流动。等熵流动要求每个流体质点的熵在流动过程中保持不变,即
,式中S为熵;v为速度;t为时间;为随体导数;墷为梯度算符。在等熵流动中,虽然每个流体质点的熵保持不变,但不同流体质点的熵可以有不同的值,因而整个流场内的熵并非常数。如果流场在初始时刻是匀熵的(即各流体质点的熵相同),则等熵流动将使流场在任何时刻都是匀熵的,即S等于常数。有人把这种运动也称为等熵流动。
可逆的绝热流动都是等熵流动,不可逆的绝热流动则是不等熵的,由热力学第二定律可知熵总是增加的,即。用熵表示的能量方程为:
,式中ρ为密度;T为热力学温度;k为热导率;ф为粘性耗损项。因此,要保持,必须使热传导项与粘性耗损项正好抵消,这在实际上是很难实现的。因此,有时把等熵流动和可逆的绝热流动看成是等同的。从能量方程还可看出,忽略粘性和热传导的流体连续运动一定也是等熵流动。
对于比热为常数的完全气体,熵表为:
,式中 CV为定容比热;为气体比热比,Cp为定压比热;p为压力;C为常数。 从等熵方程 可得出。它同连续性方程和运动方程一起,构成了经典气体动力学的封闭运动方程组。
参考书目
H.W.李普曼、A.罗什柯合著,时爱民等译:《气体动力学基础》,机械工业出版社,北京,1981。(H.W.Liepmann and A.Roshko,Elements of Gasdynamics,John Wiley & Sons,New York,1957.)
,式中S为熵;v为速度;t为时间;为随体导数;墷为梯度算符。在等熵流动中,虽然每个流体质点的熵保持不变,但不同流体质点的熵可以有不同的值,因而整个流场内的熵并非常数。如果流场在初始时刻是匀熵的(即各流体质点的熵相同),则等熵流动将使流场在任何时刻都是匀熵的,即S等于常数。有人把这种运动也称为等熵流动。
可逆的绝热流动都是等熵流动,不可逆的绝热流动则是不等熵的,由热力学第二定律可知熵总是增加的,即。用熵表示的能量方程为:
,式中ρ为密度;T为热力学温度;k为热导率;ф为粘性耗损项。因此,要保持,必须使热传导项与粘性耗损项正好抵消,这在实际上是很难实现的。因此,有时把等熵流动和可逆的绝热流动看成是等同的。从能量方程还可看出,忽略粘性和热传导的流体连续运动一定也是等熵流动。
对于比热为常数的完全气体,熵表为:
,式中 CV为定容比热;为气体比热比,Cp为定压比热;p为压力;C为常数。 从等熵方程 可得出。它同连续性方程和运动方程一起,构成了经典气体动力学的封闭运动方程组。
参考书目
H.W.李普曼、A.罗什柯合著,时爱民等译:《气体动力学基础》,机械工业出版社,北京,1981。(H.W.Liepmann and A.Roshko,Elements of Gasdynamics,John Wiley & Sons,New York,1957.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条