说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 渐近整体解
1)  asymptotic global solution
渐近整体解
1.
Initial boundary value problem of singular semilinear parabolic equation with positive parameter is considered in this paper and uniformly asymptotic global solution of the above problem is constructed 6ref
通过研究一类含奇异项和正参数的半线性抛物方程的初边值问题,构作出了该问题的一致渐近整体解- 参6
2)  global asymptotic behavior
整体渐近性态
1.
In this paper, the boundedness of solution and the global asymptotic behavior of Lienard equation x +f(x) x +g(x) = e(t), where e(t) is absolutely integrable, is studied.
本文研究Lienard方程x+f(x)x+g(x)=e(t)的解的有界性及整体渐近性态,并获得了所有解及它们的导数有界与收敛于零的充要条件。
3)  Asymptotic solution
渐近解
1.
Exponentially small term in asymptotic solution of a singular perturbation problem;
关于奇异摄动问题渐近解中的指数小项
2.
The asymptotic solution of a class of nonlinear equation;
一类非线性方程的渐近解
3.
The asymptotic solutions contain no secular term,which overcomes a defect in Khuri s paper.
利用Lindstedt-Poincare摄动法,首先求得一个来源于广义相对论的非线性微分方程的渐近解。
4)  asymptotic solutions
渐近解
1.
A new congruence equation and its asymptotic solutions;
一个新的同余方程及其渐近解
2.
The normal form and stable asymptotic solutions of the 3:1 internal resonance of Duffing-Van der Pol cubic nonlinear system are obtained by jointly using the undetermined fundamental frequency method and normal form theory.
通过将待定固有频率法引入规范形求解过程,获得了两自由度立方Duffing-Vander Pol强非线性振动子的规范形及稳态渐近解。
3.
The necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.
研究带转点的三阶常微分方程 εy +f(x ;ε)y″+g(x ;ε)y′+h(x ;ε)y =0 , ( -a
5)  asymptotically decouple
渐近解耦
6)  asymptotie theory
渐近近似解
1.
This paper is devoted to studying the asymptotie theory of initial value problems for a semilinear perturbed telegraph equation.
作为浙近理论的应用,我们对一个带初问题的特殊电报方程进行了研究,得到了两个|ε|(-1)阶渐近近似解。
补充资料:渐近稳定解


渐近稳定解
asymptotically - stable solution

渐近稳定解[asymp咖回ly一stable sduti佣;~"ror卜,ee姗ycro曲,栅e peoe“。el 一个微分方程组的解,它在月刃乃旧oB意义下是稳定的(见加.lyl舰旧稳定性(Lyapunov stability)),并且吸引具有足够接近的初始值的一切其他解.例如,考虑方程组 卒二f(r.,、‘。 a了J、右边的函数f(:,考)对于一切:):,考任R”有定义,并使得方程组(*)的解存在而且是唯一的.这时,方程组(*)的解 x(;,乱),x(:,乱)=老。是渐近稳定解,如果这个解同一切与其足够接近的解 x(:,句,}若一蜀}0,一起对于一切:):有定义,并且对于任意的。>0,存在占,0<占
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条