1) feed-forward neural network
前馈式神经元网络
1.
6 simulation and as a phenomenological study,a feed-forward neural network with multiple output neurons is built to identify and separate different ed events from H→r+r-,Drell-Yan,tt and W+ W-processes in LHC pp collision.
6蒙特卡罗模拟,作为一种唯象的研究,对于LHCPP对撞中来自H→r+r-,Drell-Yan,以及tt和W+W-过程的eμ事例,用一具有多个输出网点的前馈式神经元网络进行鉴别,对各物理过程均获得了满意的选择效率和本底压低水平。
2.
As a phenomenological study based on Monte Carlo simulation, a feed-forward neural network is designed to reconstruct Higgs invariant mass for giving ocrred M" mass position and satisfactory width, as well as the background reje.
这里作为基于蒙特卡罗模拟的唯象性研究,设计了一个前馈式神经元网络,用以重建Higgs粒子的不变质量,不仅得到了正确的MH质量峰值及比较好的宽度,并同时具有抗本底事例干扰能力,可应用于实验的共振态新粒子寻找及粒子质量的精确测量。
2) feed forward neural networks
前馈神经元网络
1.
The reason of local optimization for learning multi layer feed forward neural networks is discussed.
介绍了拟牛顿公式中 BFGS修正算法和 Wolf- Powell不精确线性搜索准则所具有的全局收敛性质 ,分析了将该算法应用到前馈神经元网络的训练学习中存在局部最优的原
3) feed-forward neural network
前馈式神经网络
1.
New learning algorithm for feed-forward neural network based on objective back-propagation;
一种新的基于目标反传的前馈式神经网络训练算法
4) multiple layer forward neural network
多层前馈型神经元网络
5) multi-layered forward neural network
多层前馈神经元网络
6) Feedforward Neural Network
前馈神经网络
1.
Multi-layer feedforward neural network based on binary ant colony algorithms;
基于二元蚁群算法的多层前馈神经网络
2.
Chaos BP hybrid learning algorithm for feedforward neural network;
前馈神经网络的混沌BP混合学习算法
3.
A new feedforward neural network pruning algorithm;
一种新的前馈神经网络删剪算法
补充资料:神经元形态中枢神经系统内轴突髓鞘的形成示意图
李瑞端绘
[图]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条