1) complete residuated
完全剩余
1.
In this paper,we introduce the concepts of fuzzifying semigroups based on complete residuated lattice valued logic,and discuss the structures and the properties of the subgroups,regular subsemigroups and completely regular subsemigroups.
该文定义了基于完全剩余格值逻辑上的半群的概念。
2) complete residue system
完全剩余系
3) complete lattice/residuated mapping
完全格/剩余映射
4) completely distributive residuate lattice
完全分配剩余格
5) complete system of residue segment
完全剩余段系
1.
In this paper, according to the theory of congruence, the integer segment D λconsisting of λ+1 integers of continuity has been incorporated into the least nonnegative complete system of residue segment of module π′ n=P 2P 3ΛP n.
本文依据同余理论将λ + 1(λ 1)个连续整数构成的整数段D[b]λ={b ,b + 1,Λ ,b +λ}(b∈Z)划归为模π′n=P2 P3ΛPn的最小非负完全剩余段系D[Bn]λ,并引进了“n维筛法” ,从而证得本文主要结论 :在a2 与 (a + 1) 2 间至少有二个素
6) right-hand complete residue system
右方完全剩余系
补充资料:完全剩余系
完全剩余系
complete system of residues
完全剩余系「~川ete娜腼of residues;n一叱-T纵a侧日叫旧I们B』,模m的 任意一个由对模m两两不同余的m个整数所组成的集合.通常取为模m的完全剩余系的有:最小非负剩余0,…,m一1,或绝对最小剩余—当m是奇数时,由0,士1,…,生(阴一l、/2组成;当m是偶数时.由0.士L,二,土(。一2)「2,m少2组成.cA.C、℃11毛旧。B撰【补注】也见既约剩余系(代沮u以沮s”t曰mof心i-dues).潘承彪译戚鸣皋校
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条