1) Gr semilocal ring
Gr-半局部环
2) Gr-coherent Gr-semilocal ring
Gr-凝聚Gr-半局部环
3) semi-local ring
半局部环
1.
And semi-simple rings,Noetherian,V-rings,semi-Artinian rings,semi-local rings are characterized by pseudo-injective modules.
研究了伪内射模的性质,用伪内射模刻画了半单环,Noether、V-环,半Artin环和半局部环,得到的主要结果为:(1)伪内射模的完全不变子模是伪内射模;(2)R是半单环当且仅当伪内射模与半单模一致当且仅当半本原模是伪内射模,且本质基座的模是伪内射模当且仅当基座为0的模是伪内射模,伪内射模的直和伪内射;(3)R半Artin环当且仅当基座为0的模伪内射;(4)R是半局部环当且仅当R为左良好环且半本原模是伪内射模。
2.
Then when R is one of the following rings: (1) integral domain , (2) semi-local ring , (3) ring with J(R)=0.
设R是有单位元的交换环,M是R-模,如果对M的任意子模N,存在R的理想I,使得N=I·M,则称M是乘法R-模,本文主要结论是:设M=Rx_1+…+Rx_(?),其中x_i=(a_(1i),a_(2i),…,a_(?))∈R~(1×n),i=1,2,…,n,并且sum from i=1 to (?)a_(ii)=1,那么当R是下列环之一时:(1)整环;(2)半局部环;(3) J(R)=0,有:M是乘法R-模当且仅当F_2(A)=0,其中F_2(A)表示矩阵A=(a_(ij)_(?)中一切2阶子式在R中生成的理想。
4) Semilocal ring
半局部环
1.
This paper gives the structure of finitely cogenerated sub-projective modules and the structure of sub-projective modules over a semilocal ring.
给出了有限反生成的亚投射模的结构及半局部环上的亚投射模的结构,并用亚投射性刻划半单纯环和半局部环。
5) semilocal rings
半局部环
1.
Also we answer a question posed in [8] on K_1-groups of semilocal rings.
本文定义环R为半替换环如果R/J(R)为替换环,它是替换环和半局部环的共同推广。
2.
We give several equivalent characterizations of regularity and strongly regularity of semilocal rings in terms of JGP—Injective modules(rings).
本文主要借助JGP-内射模(环),给出半局部环的正则性和强正则性的一些等价刻画。
6) Noetherian semilocal ring
Noether半局部环
补充资料:局部环
局部环
local ring
局部环【】仪川‘飞;“0湘几‘fI0e劝月城0了 有唯一极大理想的含么元交换环(con卫nutati祀月ng).若A是局部环,m是A的极大理想,则商环A/111是一个域,称为A的剩余域(residue fie】d). 局部环的例子.任意域和赋值环是局部环.一个域k或任一局部环上的形式幂级数环k[【Xl,…,戈1]是局部环.另一方面,多项式环k[X!,…,戈」(n)l)不是局部环.设X是拓扑空间(或微分流形,解析空间,代数簇)及x是X的一个点,设A是在x点的连续函数(相应地,可微,解析或正则函数)的芽构成的环,则A是局部环,它的极大理想由在x点取值为零的所有函数的芽构成. 环论中的一些一般性构造产生局部环,其中最重要的是局部化(见交换代数的局部化(1以卫liZ如on ina印nunutative川geb份)).设A是一个交换环,p是A的一个素理想.环A。由形如a/s的分式构成,其中a〔A,s6A\尹,它是局部环,称为环A在p处的局部化(localj匕tjon).A,的极大理想是pAp,A,的剩余类域同构于整商环A/p的分式域.其他的产生局部环的构造是H日限祀1化(见Ha.对环(Hensel ring))或一个环相对于某个极大理想的完全化(田mP城lon).局部环的任一商环是局部环. 环A(或A模M,或A代数B)的一个性质称为局部性质(k冷11 property),若它对A成立等价于对所有A。(相应地,模MQ,A,,或代数B风A。)都成立,其中p取遍A的所有素理想(见局部性质1以川pmpeI’ty)). 局部环A的极大理想m的所有的幂m”定义了所谓局部环拓扑(fo司~nngto脚10gy)(或m进拓扑(m.adic top01ogy))的在零处的一个邻域基.对于Noether局部环,这个拓扑是可分的(Kr山!定理(Krul{U功m)〕,它的任一理想都是闭集. 以下仅考虑N沈d记r局部环(亦见N血劝曰环(N吮由c比知nng)).一个局部环称为完全局部环(co-mPlete】o司nng),若它相对于m一adie拓扑是完全的.这时A二腼_。A/m”.在完全局部环中,m-adic拓扑比任何其他可分拓扑弱(〔址份卿定理(C五e司ey山印1℃力1)).任一完全局部环都能表成形式幂级数环战〔Xl,…,戈JI的商环,其中S是域(在特征相同的情况下)或完全离散赋值环(在特征不同的情况下).这个定理可以用于证明完全局部环的一些特殊性质,这些性质在一般的Noc油er局部环中是不成立的(见〔5」).例如,完全局部环是一个优环(exCellent nng). 局部环A的更精细的定量化的研究与伴随分次环(adjoint,ld曰川】g)Gr(通)=0。,。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条