1) Nemytskij set-valued operators
Nemytskij多值算子
2) multivalued operator
多值算子
1.
Discussed the iterative solution of fix point for multivalued operator satisfied Uniformly one--sided Lipschitz condition in Hilbert space.
针对 Hilbert空间上一类满足一致单边 L ipschitz条件的多值算子不动点问题 ,讨论了其迭代解法 ,构造了参数凸组合形式的迭代格式 ,并证明了迭代过程的收敛性 。
3) multivalued increasing operator
多值增算子
1.
Several fixed theorems for multivalued increasing operators are obtained, and the obtained results extend and improve the related known works in the literature.
研究了一个多值增算子的不动点问题,获得了几个存在性定理,所获结果推广了已知的结论。
4) multivalued non-monotone operator
多值非单调算子
1.
We utilize Park s maximal element theorem in H-space to prove the existence theorems of solutions of the complementarity problems for multivalued non-monotone operators in Banach spaces.
应用H-空间中的Park极大元定理,在Banach空间中证明了多值非单调算子的相补问题的解的存在性定理。
5) Multivalued monotone operator
多值单调算子
1.
we introduce two new concepts on the implicit com plementarity and the complementarity problem for multivalued operator in Banachspaces, and we prove the existence theorems of solutions of the implicit complem entarity and the complementarity problems for multivalued monotone operator.
在 Banach空间中引入了多值算子的隐补问题和相补问题的新概念 ,并证明了多值单调算子隐补问题和相补问题解的存在性定理 。
6) multivalued linear operator
多值线性算子
1.
In this paper we introduce the concept of degenerate regularized semigroups, and give some basic properties of degenerate regularized semigroups, as well as generation theorems of exponentially bounded degenerate regularized semigroups by using multivalued linear operators.
引入了退化正则半群的定义,给出退化正则半群的一些基本性质,并证明了用多值线性算子刻划的指数有界退化正则半群的生成定理。
2.
The condition is given under which a pseudoresolvent R(·)(B(X)) on Ω can be defined by a multivalued linear operator A so that R(λ)=(λ-A)-1,λ∈Ω.
文中给出了Ω上的拟预解R(·)(B(X))可由X上的一个多值线性算子A定义的条件:x∈X,存在{λn}Ω,使W-limn→∞R(λn)x=0;并证明了谱关系:复数λ∈σ(A)当且仅当(μ-λ)-1∈σ(R(μ;A))(λ≠μ)对多值算子及由其定义的拟预解也成立。
3.
To further develop generalized inverse theorem of multivalued linear operator,quasi-linear projector was used to define Moore-Penrose homogeneous operator of multivalued linear operator.
利用拟线性投影定义了多值线性算子的Moore-Penrose齐性算子部分。
补充资料:单值算子
单值算子
monodromy operator
单值算子〔m仪.山咖yo伴rator;MO“0皿poM”加onepa-TOP」 有界线性算子U(T),它将Banach空间中微分方程交=A(t)x(其中A(t)是依赖于t的有界算子,即连续的、且以T为周期的)的解的初值x(0)=x。与在时刻T的值相联系:x(T)=U(T)x。对于每一个解,x(t十T)=U(T)x(t).在有限维空间中,u(T)对应于单值矩阵(monod比myIT坦tr认).单值算子的谱的位置影响着方程周期解的存在时,无穷远处解的性态,此方程化为常系数方程的可约性,以及指数分叉的存在性,对于A(O和f(灼具有周期性的非齐次方程交=A(t)x十f(t),其周期解的存在和唯一性问题也借助于单值算子谱来解决 亦见B田.山空间中微分方程的定性理论(QI坦11-扭七ve theo习ofd正rerential闪Uations inBanachsPaces). C .F .KPe认H撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条