1) convexity-perserving homeomorphism
保凸同胚
2) orientation preserving homeomorphism
保向同胚
1.
The behavior of the system on the curve is like the orientation preserving homeomorphism on a circle.
证明当扩散系数适当大时Neumann边条件下无电容效应的Sine Gordon系统全局吸引子是一条不变曲线 ,系统在其上的行为类似于圆周上的保向同胚 。
3) isometric hemeomorphism mapping
保长同胚
1.
We establish an isometric hemeomorphism mapping between the n-th and(n-1)-th Brillouin zone to prove the equation of their volume.
通过证明Wigner-Seitz原胞的体积等于原胞体积,说明第一布里渊区体积等于倒格子原胞体积;对于第n布里渊区和第n-1布里渊区建立保长同胚映射证明两者体积相等。
4) Homeomorphism
[英][,həumiə'mɔ:fizəm] [美][,homɪə'mɔrfɪzəm]
同胚
1.
The ACL Property of Homeomorphisms under Weak Conditions;
弱条件下同胚的ACL性质
2.
Some existence and uniquencess results are obtained for the nonlinear fourth order elliptic boundary value problems by using some results about the global homeomorphism theory and dynamical system theory respectively.
分别利用全局同胚理论和动力系统理论的一些结论,研究了非线性四阶椭圆边值问题解的存在性与唯一性。
3.
By using homeomorphism method and the extended inverse function theorem,the existence and uniqueness of the solution for the semi-linear pseudoparabolic equations is obtained.
首先在Hilbert空间中建立了强制不等式,利用同胚方法和抽象的反函数定理,得到了半线性伪抛物方程初边值问题解的存在性和惟一性定理。
5) homeomorphic
[,həumiəu'mɔ:fik]
同胚
1.
In this paper,the author researches the sufficient conditions which make the compact orientable submainfolds of the unit sphere homeomorphic to the sphere.
研究单位球面Sn+k中紧致可定向子流形Mn同胚于球面Sn的充分条件,一是在子流形维数n为偶数维的情形下给出一个有关Ricci曲率与平均曲率向量模长之间的不等式;另一个是Mn在为极小子流形时给出一个有关Ricci曲率和数量曲率的下界。
2.
The main results are by Anderson that are l~2 is homeomorphic to R~∞, and T×Q is homeomorphic to Q ,where Q is the Hilbert cube ,T is the subspase ([0,1]×{0})×({1/2}×[0,1]) of [0,1]×[0,1], which looks like the letter l~2 and R~∞are not homeomorphism ,but it is true for the infinite-dimensional space R~∞? Frech arised the question that whether l.
以l~2为具体的研究对象,重点介绍了Anderson的一些相关工作,例如,l~2同胚于R~∞,T×Q同胚于Q,这里Q表示Hilbert立方,T记为[0,1]×[0,1]的子空间([0,1]×{0})∪({1/2}×[0,1]),这个集合的形状类似于英文字母中的’T’。
6) convex cohgruehcg
凸同
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条