说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 地球化学热力学
1)  geochemical thermodynamics
地球化学热力学
1.
The mineralizing conditions of the Dongbeizhai fine disseminated gold deposit are described,the dissolved or transported form of gold in hydrothermal fluid and the mineralizing process are studied by means of geochemical thermodynamics.
本文依据地球化学热力学方法圈定了东北寨微细浸染型金矿床的成矿条件,探讨了热液中金的溶解迁移形式及成矿过程。
2)  geochemical kinetics
地球化学动力学
1.
The formation and development of geochemical kinetics were reviewed, and the latest developments of geochemical kinetics of mineral-water interaction were discussed.
回顾了地球化学动力学这门新兴学科的产生与发展 ,评述了国内外矿物 -水反应的地球化学动力学研究的新进展 ,介绍了矿物 -水反应的溶解动力学及地球化学动力学模拟的新成果及应用领域。
3)  chemical geodynamics
化学地球动力学
1.
This paper summarizes the preliminary experienoe in our recent study of the East Qinling Orogenic Belt on isotopic mapping and chemical geodynamics with several successful examples.
总结了应用同位素地球化学填图和化学地球动力学研究东秦岭造山带的初步经验,并以较成功的实例来说明,内容包括:(1)华北和扬子克拉通幔源和壳源岩石化学和Nd、Pb同位素组成及壳幔演化差异的确定;(2)南秦岭前寒武纪基底应归属于扬子陆块构造-地球化学省的地球化学论证;(3)关于东秦岭蛇绿岩铅同位素的Dupal型特征及其同三江地区(属古特提斯范围)蛇绿岩的相似性的揭示;(4)北秦岭元古宙基底可能为古洋岛型微陆块的地球化学证据;(5)东秦岭新元古代和早古生代洋壳俯冲消减及聚汇带壳-幔再循环的地球化学证据;(6)关于陆-陆碰撞过程中杨子陆块边缘(南秦岭)俯冲于华北陆块边缘(北秦岭)之下,从碰撞型花岗质岩浆源区地球化学研究获得的直接证据。
4)  geochemical dynamics
地球化学动力学
1.
After referring to an abundance of documents,the authors have summarized the development and status quo of geochemical dynamics both at home and abroad.
地球化学动力学是地球化学的一个重要分支学科,目前已经成为研究地球化学过程演化发展的必然途径之一。
2.
The forming, the development and the current situation of geochemical dynamics are summarized in detail in this paper.
地球化学动力学是地球化学的一个重要分支学科,现在已经成为研究地球化学过程演化发展的必然途径之一。
5)  geothermal geochemistry
地热地球化学
6)  Geodynamic evolution
地球动力学演化
补充资料:化学热力学
化学热力学
chemical thermodynamics

   用热力学原理和实验技术研究化学系统的宏观性质和行为的物理化学的分支学科。主要研究化学系统在各种条件下的物理过程及化学变化伴随着能量转化所遵循的规律,从而对系统的性质和行为、过程的方向和限度作出判断。化学热力学主要问题有三:①所有的物质都具有能量,总能量是守恒的,各种能量之间可以互相转化。②物质系统过程总是自发地趋向于平衡态。③平衡的物质系统可用几个可观测的量或热力学函数描述。
   化学热力学是在三个基本定律基础上建立起来的。热力学第一定律是热、功、内能三者之间守恒及转化的定量关系,J.P.焦耳热功当量测定给定律以坚实的实验证明。热力学第二定律是在研究热功转化过程中提出来的,R.克劳修斯认为“不可能把热量从低温物体传到高温物体而不产生其他影响”。L.开尔文认为“不可能从单一热源取热使之完全变为有用的功而不产生其他影响”。这两个定律是人类长期经验的总结,无数事实证明它们是普遍正确的。20世纪初期建立的热力学第三定律,G.N.路易斯和M.兰德尔认为“在热力学温度0K时,所有纯物质完美晶体熵值为零”。这个定律为物质的熵规定了基准,就可计算物质指定状态下的熵值及化学反应的熵变化值。J.W.吉布斯提出相律,对相平衡的研究具有重要的指导作用。20世纪60~70年代,对远离平衡态的研究,L.昂萨格建立了不可逆过程热力学和I.普里高金提出耗散结构理论对非平衡态热力学作出杰出的贡献。根据大量事实总结出的热力学第一、第二定律及经过严格逻辑推理和数学证明得出热力学函数、规律,对各种宏观物质系统都具有高度的可靠性。这些理论是根据宏观现象得出的,因此为宏观理论,又称唯象理论。宏观热力学理论不依赖于物质的微观结构性质,这是热力学方法的特征。分子结构理论的发展和变化,都无需修改化学热力学理论和概念。化学热力学理论只研究平衡态,研究系统过程平衡的始态和平衡的终态,对于平衡终态怎样到达中间过程、变化的细节、过程的机理( 即物质系统某一变化的过程 )是不讨论的。热力学函数(状态函数)变化值只决定于始态与终态,与中间过程无关。化学热力学理论均未包含时间变量,未考虑时间因素,因此不能解决过程的速率问题。为解决化学热力学理论上述的局限性,需要化学热力学与物理化学其他分支学科(量子化学、化学统计力学、化学动力学)结合,才能深入认识化学系统性质和行为。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条