说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 初始值问题
1)  Initial value problem
初始值问题
1.
We discuss the existence of the coupled minimal and maximal quasi-solutions of an initial value problem \ \ u′(t)-h(t)f 1(u)=f 0(t,u) u(0)=u 0\ \ \ \ \ \ \ \ \ where f 0:J×R n→R n satisfies the Carathéodory s condition,f 1∈C R n,R n ,h∈C J,R ,J= 0,T ,T≥0 and for each i,g i∈C R,R ,f 0+hf 1 is g i-monotone.
讨论初始值问题u′(t)-h(t)f1(u)=f0(t,u)u(0)=u0{的最小与最大的耦合拟解。
2.
By the structure of weak entropy solution of corresponding initial value problem and the boundary entropy condition which was developed by Bardos-Leroux-Nedelec, we give a construction method to the weak entropy solution of the initial-boundary value problem.
由相应的初始值问题弱熵解的结构和Bardos-Leroux-Nedelec提出的边界熵条件,给出初边值问题弱熵解的一个构造方法。
2)  initial value problem of ODE
ODE初始值问题
3)  Initial boundary value problem
初始边值问题
1.
A class of singularly perturbed initial boundary value problems for reaction diffusion equations in a part of domain are considered.
本文是讨论一类在局部区域上的奇摄动反应扩散初始边值问题。
2.
A class of singularly peturbed initial boundary value problems for the raction diffusion equations in a part of domain are considered.
讨论一类在部分区域上的奇摄动反应扩散方程初始边值问题。
4)  initial value problem
始值问题
1.
Beyond the usual method,the one dimensional equation was expressed in the form ofa)(a)u f(x,t)t x t x(? ? + ?? ?? ? ??=,which then was introduced by middle varible ??u t ? a ??x u=V(x,t),so that the same solution of initial value problem by the characteristic curve method of the first order equations a f x tt x(? ? +??)=(,) and(? ?u t ?a ??ux)= V(x,t) was abtained.
对一维非齐次波动方程的始值问题在传统的叠加原理、达朗贝尔公式、齐次化原理的方法之外,完全用特征线方法,先将方程表示为a)(a)u f(x,t)t x t x(??+???????=的形式,进而引入中间变量Vu a u=??t???x,得以用一阶方程??tυ+a??υx=f(x,t)及??ut?a??xu=V(x,t)的特征线方法,推导出维该始植问题的与传统方法相同的解。
2.
The paper deals with discrete phenomena in existence and uniqueness of the fourth initial value problem for the following equations: U(xx)-x~2U(tt)+pUt=0, U(x,12βx~2)=0,β>1.
讨论了重特征方程Uxx-x2Utt+pUt=0的第4始值问题。
5)  Cauchy problem
初值问题
1.
A numerical processing for Cauchy problem multi-delay functionalis difference equation;
多时滞泛函微分方程初值问题的一种数值处理方法
2.
By establishing a new comparison principle,using the method of L-quasi-upper-lower solution and the mixed monotone iterative technique,the existence and uniqueness of solutions for Cauchy problems of first order nonlinear integro-differential equations in Banach spaces are obtained.
通过建立一个新的比较原理,利用L-拟上下解方法和混合单调迭代法,研究了Banach空间中一阶非线性积分-微分方程初值问题解的存在惟一性,并给出了近似解的迭代序列和误差估计式。
3.
By establishing a new comparison principle,and using method of L-quasi-upper and lower solutions and mixed monotone iterative technique,the results of existence and uniqueness of solutions to Cauchy problems of first order nonlinear integrodifferential equations in Banach spaces are obtained.
通过建立一个新的比较原理,利用L-拟上下解方法和混合单调迭代法,研究了Banach空间中一阶非线性积分微分方程初值问题解的存在唯一性,并给出了近似解的迭代序列和误差估计式。
6)  initial value problems
初值问题
1.
Barycentric interpolation collocation method for solving initial value problems of differential equation;
重心插值配点法求解初值问题
2.
Global solutions for initial value problems of ordinary differential equation in Banach spaces;
Banach空间常微分方程初值问题整体解的存在性
3.
The solution and necessary and sufficient conditions for the existence and uniqueness of solution for initial value problems of general linear systemare studied in this paper.
研究了广义线性系统E x =Ax +f的初值问题解的存在唯一性的充要条件和求解公
补充资料:微分边值问题的差分边值问题逼近


微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems

  微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的1,则无论取什么范数都无收敛性.如果;簇1,且范数为 !lu‘}!,=suo}“几}.则问题(2)是稳定的,因而有收敛性(见[2],[3]): 11[uL一价l,认=O(内). 差分问题代替微分问题是用计算机近似求解微分边值问题的最通用的方法之一(见【7]). 微分问题用其差分的近似代替开始于!l],【2]和[41等著作.这一方法有时还用来证明微分问题解的存在,按下述方案进行,先证明微分边值问题的差分近似的解。*的集合对h是紧的,然后即可证明某一子序列u‘在h*~0时的极限是微分问题的解认如果该解已知是唯一的,则不仅子序列,而且整个u。集在h~0时都收敛到解u.【补注】补充的参考文献见微分算子的差分算子通近(aPpoximation of a di亚rential operator by diffe-ren沈operators)的参考文献.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条