1) explicit pseudo spectral method
显式拟谱方法
2) pseudo-spectral method
拟谱方法
1.
A new pseudo-spectral method for solving Poisson equation in polar coordinate system;
极坐标系下泊松方程的拟谱方法
2.
Convergence and optimal error estimation of pseudo-spectral method for nonlinear Boussinesq equation;
非线性Boussinesq方程拟谱方法的收敛性与最优阶误差估计
3.
The waterfall plots of the wave were drawn with Matlab according to the numerical simulation of the fKdV equation with the pseudo-spectral method.
在导出非线性表面波遵循的fKdV方程后,利用拟谱方法进行数值模拟,用Matlab软件绘制瀑布图,由此得出结论:上凸底部上的波可以看成是向前凸台阶和向后凸台阶分别向前后散射发展的结果,二者不发生相互作用;下凹壁面的波形是向前凹台阶和向后凹台阶相互作用的结果;某些组合式底部的波形是上凸和下凹相互作用的结果。
3) pseudospectral method
拟谱方法
1.
The characteristic pseudospectral methods for convection diffusion problem;
对流扩散问题的特征拟谱方法
2.
The Fourier pseudospectral methods for the generalized symmetric regularized long wave equations;
广义对称正则长波方程的傅里叶拟谱方法
3.
Pseudospectral method for a class of equations system under the coupling effect between the complex Schrodinger and real Boussinesq fields;
复Schrodinger场和实Boussinesq场耦合作用下一类方程组的拟谱方法
4) explicit method
显式方法
1.
Furthermore, an optimized generalized explicit method which can overcome some inherent limitation through introducing dis.
本文从稳定性、精度、数值耗散特性及误差累积特性等方面对拟动力试验中采用的显式和隐式数值积分方法进行较为系统的分析研究,另外提出一种优化的广义显式数值积分方法,这种方法在双β参数法和显式Newmark法的算法表达式中引入耗散系数,从而克服显式方法的一些固有缺陷。
5) Legendre pseudospectral method
Legendre拟谱方法
1.
In this paper,the Legendre pseudospectral method is used to establish the semi-discrete and fully discrete schemes for numerically solving the generalized Ginzburg-Landau equation with Dirichlet boundary conditions,and the error estimation of the approximation solution is obtained.
利用Legendre拟谱方法对广义Ginzburg-Landau方程的Dirichlet问题构造了半离散和全离散逼近格式,并对半离散和全离散格式的解给出了误差估计。
6) Fourier pseudo-spectral
Fourier拟谱方法
1.
The discretization in space and in time and the mulit-symplectic consevation law are obtained for the symplectic schemes of vibration equations of beams by means of Fourier pseudo-spectral method.
利用Fourier拟谱方法,分别对梁振动方程的辛格式进行空间和时间方向上的离散,得到相应的多辛守恒律。
2.
We discrete it by symplectic Fourier pseudo-spectral method and obtain a multisymplectic scheme with N discrete multi-symplectic conservation laws.
用辛Fourier拟谱方法对其离散得到具有N个离散的多辛守恒律的多辛格式。
补充资料:显式差分方法
见分步法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条