1) inessential operator
非本性算子
1.
Obtains that the ideal of strictly cosingular on superprojective Banach space X is equal to the ideal of inessential operators on X.
证明在超投影空间上,当一个算子的共轭是严格余奇异算子时,其本身也是严格余奇异的;超投影空间上的严格余奇异算子理想与非本性算子理想是重合的。
2) nonlinear operator
非线性算子
1.
Several stabilities of nonlinear operators;
非线性算子的几种稳定性
2.
The Fréchet derivative of a nonlinear operator and its applications;
一类非线性算子的Fréchet导数及其应用
3.
, Banach space X is uniformly convex and its module of convex (δX(ε)≥)cε~p (0<ε<2,0<c<1,p≥2) if and only if norm of X is satisfied with the inequality ‖(1-(t)x+)ty‖~p+cw(t)‖x-y‖~p≤(1-t)‖x‖~p+t‖y‖~p, x,y∈X, and t∈(0,1), w(t)=(t(1-)t)~p+(1-t)t~p, the authors obtained the convergence of Ishikawa iterative sequences for nonlinear operator.
研究了非线性算子关于由Ishikawa迭代序列的收敛性 ,推广和改进了一些相关的结
3) essentially normal operator
本性正规算子
1.
In this paper,the norm closure of (U+K)- orbit of the essentially normal operator T=(?)W is described.
刻画了本性正规算子T=(?)W的(U+K)-轨道的范数闭包。
4) nonlinear Lipschitz operator
非线性Lipschitz算子
1.
We introduce the notion of f-M spectral theory for the nonlinear Lipschitz operators,and give relative theory.
引入非线性Lipschitz算子的f-M谱概念,建立了相关理论。
5) nonlinear accretive operator
非线性增生算子
1.
In this paper,a three-step iterative procedure for nonlinear accretive operator equations without continuous conditions in a uniformly smooth Banach spaces has been put forward,and the problem of its convergence has also been discussed.
提出了在一致光滑Banach空间中不带连续性条件的非线性增生算子方程的三重迭代程序,并研究了其收敛性问题。
2.
Suggest and analyze a three-step iterative scheme with errors for nonlinear accretive operator in a uniformly smooth Banach spaces.
提出了在一致光滑Banach空间中不带连续条件的非线性增生算子方程带误差的三重迭代程序并研究了其收敛性问题。
3.
The authers suggest and analyze a three_step iterative scheme for nonlinear accretive operator equations without continuous conditions in a uniformly smooth Banach spaces.
提出了在一致光滑Banach空间中不带连续性条件的非线性增生算子方程的三重迭代程序并研究了其收敛性问题,所得的结果在更一般的条件下完善和扩展了以往的相关结论。
6) nonlinear semi-Fredholm operator
非线性半Fredholm算子
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条