说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 变时滞方程
1)  variable time lag equation
变时滞方程
2)  variable delay differential equation
变时滞微分方程
1.
This paper studies the oscillation of second-order variable delay differential equation x"(t)+p(t)f(x(g(t)))=0.
研究二阶非线性变时滞微分方程x″(t)+p(t)f(x(g(t)))=0,对振动因子p(t)变符号的情况讨论了方程的振动性,通过两个已有引理得到了方程振动的两个充分条件。
2.
This paper studies the oscillation of a kind of second-order variable delay differential equation x″(t)+p(t)f(x(g(t)))=0.
研究了二阶非线性变时滞微分方程x″(t)+p(t)f(x(g(t)))=0的振动性,对振动因子p(t)变号的情况,给出了两个重要的引理,并得到方程振动的一个充分性定理。
3)  delay equation
时滞方程
1.
A necessary and sufficient condition for asymptotic stability of first order delay equation with two delays;
一阶双滞量时滞方程零解渐进稳定的充要条件
2.
Algebraic criterion for asymptotic stability of a first order delay equation with two delays;
一类一阶双滞量时滞方程零解渐近稳定的代数判据(英文)
3.
A necessary and sufficient condition for asymptotic stability of first order delay equation with two delays
一类一阶双滞量时滞方程零解渐进稳定的充要条件
4)  variable retarded differential algebraic equations
变时滞微分代数方程
5)  second order variable delay nonlinear difference equations
变时滞非线性差分方程
6)  delay Volterra equation
时滞Volterra方程
补充资料:变分方程


变分方程
variational equations iS equations in variation

  变分方程组则“具有拟多项式的右方”.自治系统沿周期解(殆周期解)的变分方程是具有周期(殆周期)系数的线性微分方程组(见周期系数的线性微分方程组(l~r system of diffel℃Iltial equa加ns witll Per-iodic eoell记ients);殆周期系数的线性微分方程组(]i“既s”把m ofdi浅I-e 11tiajequa加拙withahl℃stperiod-ic coeffieients)). 上面给的定义适用于任意阶方程.例如,摆方程无十田Zsinx二O在下平衡位置(x=O,又二0)的变分方程(如果只有相空间中的初始点变化)是义+田Zx二O,称为摆的小振动方程(叫Llation for srnaU oscilia-tions of ape们(11llum),而在上平衡位置(x=冗,交=0)的变分方程是义一。Zx=0.对于微分流形上的微分方程,解的变分方程可以类似于上面讲过的R”上的情况来定义;变分方程的解之值在流形的切丛中.有两种方法把任意微分流形的情况化为R”的情况,第一种是把流形嵌入一个维数充分高的Euclid空问中,决仁把微分方程(向量场)拓展到一个邻域中去,第二种方法是在轨道的一个邻域中,用一个坐标卜中的坐标写出定义于微分流形上的微分方程,而这个坐标卡的选取光滑依赖于此点(例如,在Rlel刀ann流形上应用指数测地映射).这样就可以把这个方程写成R门上的方程,而且‘(和第一种化法一样)其右方和流形上的微分方程的右方(即向量场)有相同的光滑性.对于R~流形上的微分方程又二F(x),若不改变F,则其沿轨道戊(t)的变分方程可以写成 V:(二(,))r=V rF(x(t)),这里V。是共变导数(covdnant derivati祀).一个微分映射/:丫~尸(V”是一微分流形)沿着轨道毛.厂‘x}r。,的变分方程(若不变动f)是方程 犷(亡+I)一dff,:r(t);这方程之解犷(·)在t点取值于V”在点f『x处的切空间兀,*V”中,而解本身就是序列 {d(j,)叉若},。z,否〔双V”,d(f勿)义即f的m阶迭代在x之导数. 令V月为闭微分流形.映V”到V”上的c,类微分同胚厂之集合可赋以C’拓扑.以下的断言是成立的(见!4]):l)对每一个kc{l,…,n},瓜n,OB特征指数(Lyapunov cll田飞Icte比tic exPonent)几一(j,·,一R*。票,,,。潍。瓦令h,dft:一 (2)这里G*(双沪)是切空间双俨的k维向量子空间所成的G秘Inalm流形.它是一个第二B苗比类(B姗elass巴)函数又。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条