1) Lagrange intermediate value formula
Lagrange中值公式
2) Lagrange interpolation formula
Lagrange插值公式
1.
A constructive proofs for Lagrange interpolation formula is given by means of linear equations system,and an explicit algorithm for the inverse matrix of the Vandermonde matrix is obtained.
利用线性方程组理论给出了Lagrange插值公式的一个构造性证明,得到了Vandermonde矩阵的逆矩阵的一种显式算法。
3) Lagrange interpolating formula
Lagrange插值公式
1.
In this paper, we give some constructed alternative proofs for the Lagrange interpolating formula by means of the Chinese remainder theorem and linear algebra theory.
利用中国剩余定理、行列式以及线性方程组理论给出了Lagrange插值公式的几种构造性证明,得到了Vandermonde矩阵的逆矩阵的一种算法。
4) Lagrange Mean Value Theorem
Lagrange中值定理
1.
Some New Proofs of the Lagrange Mean Value Theorem;
对Lagrange中值定理证明方法的讨论
2.
Research into progressiveness of intermediate point of Lagrange mean value theorem
Lagrange中值定理“中间点”的渐进性
3.
General Form of Lagrange Mean Value Theorem
Lagrange中值定理的一般形式
5) Lagrange mean value function
Lagrange中值函数
1.
Based on this,the definition of Lagrange mean value function is given in this paper.
文[2-6]对微分中值定理“中间点”的渐近性质进行了研究,本文在此基础上,给出了“Lagrange中值函数”的定义,对Lagrange中值函数的分析性质进行了系统的综合讨论,证明了Lagrange中值函数的单调性、可积性、连续性、可微性等分析性质。
6) intermediate value formula
中值公式
1.
The asymptotic properties of ξ of some intermediate value formulas for complex function are obtained.
讨论几个复函数中值公式中ξ的变化趋势,得到了几个渐近性
补充资料:Lagrange插值公式
Lagrange插值公式
Lagrange interpolation formula
h郎叨罗插值公式[u罗明罗谕娜咖“佣丘团m“.;瓜-甲明Ka抓砚Pno朋”.OHHaa中oPM抑a』 给出函数f(x)在结点x。,…,x,上的摊次插值多项式(肠脚卿插值多项式(加脚n郎角把耳旧h由n poly-朋m训))的公式: 乙(x卜丫r(x、日三二三‘.(1、 ’z尹飞xi一xz当诸x‘为等距时,即x,一x0=一x。一xn_1二h,利用记号(x一x0)/五=:就可将(1)化成形式 L。(x)=L。(x。+th)=一(一‘)·业皿矛上业息(一‘)‘(:)架升·(2)表达式(2)称为助gmn罗等距结点(叫山曲恤nt nodes)插值公式,其中f(x,)的系数 ,、。_‘,n、t(t一l卜二(t一n) 气i一‘)n!称为肠即叨邵系数(U即阳罗cocffic祀nts). 如果f在区间〔a,b1上具有n+1阶导数,又如果所有的插值结点都在此区间上且对任一点x盯a,b]记 “:“nUn{x。,’“,x。,x},刀:二~{x。,…,x。,x},那么必存在一点尝‘「“二,刀二』使 r,__、一了(·‘’)(古)。·(x) f(x)一L。(x)二二二艺共淤“达, (n+l飞!其中 。。(x)=fl(x一x,)· j一0如果导数f(·十’)的绝对值在【a,b]上不超过常数M,又如果诸插值结点取成”+1次qe6从uI曲多项式的诸根在从[一l,l]到【a,bJ的线性映射下的映象,那么对于任何x〔【口,b]都有 !f(x)一L一(、、.‘M,‘牡军其尸. 一”‘””‘’一(n+一)!2,”+’如果诸插值结点是复数z0,…,z。且位于某个以逐段光滑围道7为边界的区域G内,又如果f是G的闭包上的单值解析函数,那么其助g加罗插值公式具有形式 ,,,、=卫一f竺立劝卫丝立了,尸、,尸 儿。(z)=声能丁l书节冷厅件毕f(C)d乙, 2“‘少田(‘)(‘一z)“”一”其中 了‘,、_;‘,、=里业土f-一工丝上‘刁: 了、一z一。、一2兀iJ。(C)(z一乙)一” 了 三角多项式插值的肠gn坦罗插值公式为: T‘、卜女,月一圣鱼工二卫鱼, k一。一z笋飞sin又x*一xz)/‘它是在给定结点x。,…,x。上取指定值y0,…,y。的”阶三角多项式. 公式是由J.L.U脚n乡于1795年提出的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条