1) Green Function of Static state
定态格林函数
4) Green-function
格林函数
1.
The analytic solution of Green-function is presented under the boundary conditions,and the relationship between absortion factor Δμ_a and flux J_n is figured out.
进一步改进了已有物理模型,从理论上解决了三维有限体积内光子密度波扩散方程的求解问题,得到了长方体边界条件下的格林函数的解析解,给出了实验可测量光通量与待测物吸收系数改变量之间可进行数值计算的表达式。
2.
The applications of Green-functions with diffusion equation are summarized.
在分析有关格林函数在光子密度波扩散方程中应用情况的基础上,根据所设定的实验模型要求,将展开法与电像法相结合求解了满足扩散方程的格林函数,并详细推导了获得该函数的过程。
3.
Within a random phase approximation,the quantum Heisenberg ferromagnetic chain with long-range interaction proportional to r-p was studied by Green-function method.
在无规相近似理论框架下,运用格林函数方法研究了一维带有长程有序作用的量子海森堡铁磁模型,结果发现,如果自旋相互作用采用指数衰变r-p形式,当1
5) Green function
格林函数
1.
Approximation of time-domain Green function for finite water depth and its derivatives;
时域有限水深格林函数及其导数的数值计算
2.
Application of quasi-green function method for each operator;
准格林函数方法在各算子中的应用
3.
Approximation of time-domain Green function in finite water depth;
时域有限水深格林函数的多项式展开计算方法
6) Green's function
格林函数
1.
Green's functions for some boundary value problems of ordinary differential equations
一类常微分方程边值问题的格林函数求法
2.
Calculation of spatial-domain Green's functions for multi-layered media by discrete complex image method;
离散复镜像法求取层状介质的格林函数
3.
The difference equation for lattice dynamics Green's functions of a crystal nano-wire are solved,the lattice vibrations are analyzed,and the formulas for atomic displacements and Hamiltonian in phonon occupation number representation are obtained.
通过求解差分方程,推导了纳米晶体线的晶格动力学格林函数,分析了其晶格振动,并推导了声子数表象中的原子位移及晶格振动哈密顿公式。
补充资料:并矢格林函数
所谓并矢,是矢量的一种组合形式,如AB,其中两个矢量A、B互相不必有联系。在三维情形,它有九个分量。并矢也可表示成一个正方矩阵。它对一个矢量C右乘C·AB)=(C·A)B或左乘(AB·C)=A (B·C),就成为有标量倍数的矢量。
采用并矢记号,可以简洁地表示任意偶极源所引起的电场和磁场。令偶极源的矩(电矩或磁矩)为a,位于r┡点, 可以把这矩按r┡点的正交坐标轴展开a=a1u姈+a2u娦+a3u婭,u徾是r┡点沿坐标轴的单位矢量,设r┡点以u徾(i=1,2,3,下同)为矩的偶极源在r点引起的场(电场或磁场)的i分量为Gij(r,r┡),则在线性媒质中,以a为矩的偶极源在r点所引起的场就等于,这里的ui是r点的沿坐标轴的单位矢量,它与u媴可以不平行(例如圆柱坐标系中的嗚 和ρ都逐点改变方向)。由于,r点的场矢量可写作=G(r,r)·a,其中是个并矢,称为并矢格林函数。它的分量Gij(r,r┡)的第一个下标i和第一组宗量r 是场的分量标号和场点坐标;第二个下标i和第二组宗量r┡是源矩的下标和源点的坐标。
应用并矢格林函数可以简化求解任意分布源的场,可用以写出未知分布的受激源(如煤质块的极化电流)或未知分布的衍射孔面场的积分方程,以利于用数值方法求解。在天线和微波遥感等电磁场理论的应用领域中是基本的数学表达方法之一。
采用并矢记号,可以简洁地表示任意偶极源所引起的电场和磁场。令偶极源的矩(电矩或磁矩)为a,位于r┡点, 可以把这矩按r┡点的正交坐标轴展开a=a1u姈+a2u娦+a3u婭,u徾是r┡点沿坐标轴的单位矢量,设r┡点以u徾(i=1,2,3,下同)为矩的偶极源在r点引起的场(电场或磁场)的i分量为Gij(r,r┡),则在线性媒质中,以a为矩的偶极源在r点所引起的场就等于,这里的ui是r点的沿坐标轴的单位矢量,它与u媴可以不平行(例如圆柱坐标系中的嗚 和ρ都逐点改变方向)。由于,r点的场矢量可写作=G(r,r)·a,其中是个并矢,称为并矢格林函数。它的分量Gij(r,r┡)的第一个下标i和第一组宗量r 是场的分量标号和场点坐标;第二个下标i和第二组宗量r┡是源矩的下标和源点的坐标。
应用并矢格林函数可以简化求解任意分布源的场,可用以写出未知分布的受激源(如煤质块的极化电流)或未知分布的衍射孔面场的积分方程,以利于用数值方法求解。在天线和微波遥感等电磁场理论的应用领域中是基本的数学表达方法之一。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条