说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 三角多次式
1)  Trigonometrical polynomials
三角多次式
2)  four-polynomial cam
四次多项式三角
3)  cubic trigonometric polynomial curve
三次三角多项式曲线
1.
In the third and fourth chapters, quadratic and cubic trigonometric polynomial curves presented by Han Xuli are discussed.
第一章介绍张纪文提出的三次C曲线;第二章介绍陈秦玉和汪国昭提出的n次C曲线;在第三和第四章中介绍韩旭里提出的二次和三次三角多项式曲线。
4)  cubic trigonometric polynomial spline curve
三次三角多项式样条曲线
1.
This paper presents a class of C2 continuous cubic trigonometric polynomial spline curves with some shape parameters.
文章提出一类C2连续带有形状参数的三次三角多项式样条曲线。
5)  cubic polynomial
三次多项式
1.
A human walking pattern was analyzed and researched in detail and the mechanical prototype was known as humanoid special for the leg,thereby a humanoid stable walking pattern during one walking cycle was planned for the bipedal robot based on cubic polynomial algorithm.
根据双足步行机器人具有拟人腿的特点,通过对人体步行样式的分析,采用三次多项式计算方法规划步行机器人在一个完整行走周期里拟人稳态步行模式,分别建立hip、knee和ankle关节在前向模型中的轨迹曲线方程。
2.
To remedy drawbacks identified in the traditional soft and hard threshold for image denoising,this paper presents a new threshold quantization method,which applies cubic polynomial interpolation to a hard threshold to achieve the continuity and differentiability for the new threshold function.
鉴于传统软硬阈值的缺陷,采用一种新型阈值量化方法,用三次多项式在硬阈值的基础上插值,使新的阈值函数保持了连续性和可导性。
3.
The continuity and differentia-bility are achieved by using cubic polynomial interpolation based on hard thresholding.
用三次多项式在硬阈值的基础上插值,使新的阈值函数保持了连续性和可导性。
6)  trigonometric polynomial
三角多项式
1.
The properties and applications of a class of curves and surfaces through the trigonometric polynomial;
基于三角多项式的一类曲线曲面性质及其应用
2.
Quadratic trigonometric polynomial Bézier curves with a shape parameter are presented in this paper.
给出了二次三角多项式Bézier曲线,基函数由一组带形状参数的二次三角多项式组成。
3.
Cubic non-uniform trigonometric polynomial curves with multiple shape parameters are presented in this paper.
对于非均匀节点向量给出了一类带多个形状参数的三次三角多项式曲线,这类曲线具有三次多项式B样条的许多重要性质:对非重节点为C2-连续,对均匀节点则为C3-连续,能直接表示椭圆。
补充资料:三角恒等式
含有三角函数的恒等式。如sin2α+cos2α=1,tgα=sinαcosαα≠nπ+π2,n是整数。[hj][hj]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条